Math, asked by mariaburhan, 4 months ago

WRITE 3^n/9^n-1 AS A POWER OF 3

Attachments:

Answers

Answered by smithasijotsl
17

Answer:

\frac{3^n}{9^{n-1}} =  3^{-n+2}

Step-by-step explanation:

Required to find,

\frac{3^n}{9^{n-1}} as a power of 3

Recall the formula

  1. (a^m)^n = a^{mn}\\
  2. \frac{a^m}{a^n } = a^{m-n}

Solution:

\frac{3^n}{9^{n-1}} = \frac{3^n}{(3^2)^{n-1}}

Applying the formula,(a^m)^n = a^{mn}\\ we get

\frac{3^n}{(3^2)^{n-1}} = \frac{3^n}{3^{2n -2}}

\frac{3^n}{3^{2n -2}} = 3^{n-(2n-2)} = 3^{n-2n+2} = 3^{-n+2}

\frac{3^n}{9^{n-1}} =  3^{-n+2}

#SPJ2

Answered by tiwariakdi
1

To find :

  • \frac{3^{n} }{9^{n-1} } as the power of 3

solution :

Formula to be used :

  • (x^{m} )^{n}=x^{mn}.....(1)
  • \frac{x^{m} }{x^{n} }=x^{m-n}......(2)

solution :

\frac{3^{n} }{9^{n-1} }=\frac{3^{n} }{(3^{2} )^{n-1}}.......(3)

Applying formula 1 in equation 3 we get ,

\frac{3^{n} }{(3^{2} )^{n-1}}=\frac{3^{n} }{3^{2n-2} }

\frac{3^{n} }{3^{2n-2} }=3^{n-(2n-2)} =3^{-n+2}

therefore , \frac{3^{n} }{9^{n-1} }=3^{-n+2}

#SPJ2

Similar questions