Math, asked by rachnahrd8559, 10 months ago

Write (3x-1)^3 in the expanded form

Answers

Answered by ihrishi
1

Answer:

(3x - 1)^{3}  = (3x)^{3}  - (1)^{3} - 3 \times (3x)^{2}  +  3 \times (3x) \times ( - 1)^{2}  \\  = 27 {x}^{3}  - 1 - 27 {x}^{2}  + 9x

Answered by charliejaguars2002
5

Answer:

\Large\boxed{27x^3-27x^2+9x-1}

Step-by-step explanation:

GIVEN:

(3x-1)³ (by using with perfect cube formula.)

You can also used distributive property.

SOLUTIONS:

First, used perfect cube formula.

\Large\boxed{\textnormal{PERFECT CUBE FORMULA}}

\displaystyle (A-B)^3=A^3-3A^2B+3AB^2-B^3

A=3x

B=1

Rewrite the problem down.

\displaystyle (3x)^3-3(3x)^2*1+3*3x*1^2-1^3

Solve. (Simplify/ to find the answer!)

\Large\boxed{\textnormal{APPLY RULE!}}

\displaystyle 1^a=1

\displaystyle 1^2=1,\:1^3=1

\displaystyle \left(3x\right)^3-3*\:1\* \left(3x\right)^2+3* \:3*\:1* \:x-1

\displaystyle 3^3=3*3*3=27

\displaystyle 3*3*1=9

\Large\boxed{27x^3-27x^2+9x-1}

As a result, the final answer is 27x³-27x²+9x-1.

Similar questions