write a brief note on application of optical fiber
Answers
Answered by
0
Luna’s Optical Vector Analyzer™ (OVA) enables complete characterization of passive optical components with industry-leading accuracy and speed. The OVA measures the linear transfer function of an optical component or assembly with a single scan of a tunable laser. From this single measurement the OVA characterizes the IL, GD, CD, PMD, Phase Ripple and more. In addition, the OVA offers a unique Time Domain view of the device under test, enabling troubleshooting of the device as well as time-domain filtering of the data for more accurate measurements.
Characterizing Optical Properties of Planar Waveguides:
Planar optical waveguide technologies are the key elements in the modern, high speed optical network. Recent, broad deployment of optical and hybrid optoelectronic chips and planar light circuits (PLCs) has been driven by the cost, size and operational benefits that these architectures offer. Luna Optical Vector Analyzers offer distinct measurement advantages that make characterizing the optical properties of planar waveguides, optical chips and planar light circuits easy.
Finding Fiber Faults in High Speed Optical Networks:
Testing of fiber optic components, accessories and networks is becoming critical in today’s demanding applications. Luna’s Optical Backscatter Reflectometer™ (OBR) is a fiber optic diagnostic tool that locates and troubleshoots splices, breaks, connectors and more in fiber assemblies with industry-leading spatial resolution, sensitivity and accuracy. The OBR can also transform standard telecom-grade fiber into a distributed strain and temperature sensor with an additional software option.
Avionics:
Luna’s Optical Frequency Domain Reflectometry technique is a practical tool for diagnosing and troubleshooting the types of fiber networks found in aviation electronics applications. Short length optical communications networks, like those in avionics and aerospace applications, require frequent health assessment. Precise recognition and localization of faults, accurate measurement of loss through the link are critical to maintaining signal integrity. The unique attributes of Luna’s technology include zero dead-zone, the ability to unambiguously identify different types of failure modes encountered in short-haul single- and multimode fiber networks, and the capability to perform distributed sensing with unaltered single- or multimode telecommunication grade optical fiber. With Luna’s technology one can detect and localize bends, breaks, bad splices and poor connections with up to 10 micron spatial resolution with zero dead-zone. Links can be measured with 1 mm resolution over up to 2000 m of fiber length. In addition to fault location and loss measurement, distributed temperature and strain measurements along standard optical fiber can occur, which saves time and money.
Security:
A communications infrastructure secure from threats of intrusion and espionage is a key element in the overall outlook of network security. Monitoring a fiber optic network presents a particularly difficult monitoring challenge due to the fact that fiber tapping methods can be made to be nearly undetectable. Methods of intrusion detection that involve either monitoring or conditioning the data stream work to protect a link in the presence of an intrusion event but do not provide information about the location or nature of the intrusion. Luna researchers found that using fiber fingerprints, you can monitor the network in situ for the types of changes associated with modern, hard-to-detect optical taps. This technique is not only capable of real-time monitoring of whether or not a fiber network has been breached by a difficult-to-detect source, it is also capable of determining the location and nature of the breach point in the network. For more details, see Luna publication
Characterizing Optical Properties of Planar Waveguides:
Planar optical waveguide technologies are the key elements in the modern, high speed optical network. Recent, broad deployment of optical and hybrid optoelectronic chips and planar light circuits (PLCs) has been driven by the cost, size and operational benefits that these architectures offer. Luna Optical Vector Analyzers offer distinct measurement advantages that make characterizing the optical properties of planar waveguides, optical chips and planar light circuits easy.
Finding Fiber Faults in High Speed Optical Networks:
Testing of fiber optic components, accessories and networks is becoming critical in today’s demanding applications. Luna’s Optical Backscatter Reflectometer™ (OBR) is a fiber optic diagnostic tool that locates and troubleshoots splices, breaks, connectors and more in fiber assemblies with industry-leading spatial resolution, sensitivity and accuracy. The OBR can also transform standard telecom-grade fiber into a distributed strain and temperature sensor with an additional software option.
Avionics:
Luna’s Optical Frequency Domain Reflectometry technique is a practical tool for diagnosing and troubleshooting the types of fiber networks found in aviation electronics applications. Short length optical communications networks, like those in avionics and aerospace applications, require frequent health assessment. Precise recognition and localization of faults, accurate measurement of loss through the link are critical to maintaining signal integrity. The unique attributes of Luna’s technology include zero dead-zone, the ability to unambiguously identify different types of failure modes encountered in short-haul single- and multimode fiber networks, and the capability to perform distributed sensing with unaltered single- or multimode telecommunication grade optical fiber. With Luna’s technology one can detect and localize bends, breaks, bad splices and poor connections with up to 10 micron spatial resolution with zero dead-zone. Links can be measured with 1 mm resolution over up to 2000 m of fiber length. In addition to fault location and loss measurement, distributed temperature and strain measurements along standard optical fiber can occur, which saves time and money.
Security:
A communications infrastructure secure from threats of intrusion and espionage is a key element in the overall outlook of network security. Monitoring a fiber optic network presents a particularly difficult monitoring challenge due to the fact that fiber tapping methods can be made to be nearly undetectable. Methods of intrusion detection that involve either monitoring or conditioning the data stream work to protect a link in the presence of an intrusion event but do not provide information about the location or nature of the intrusion. Luna researchers found that using fiber fingerprints, you can monitor the network in situ for the types of changes associated with modern, hard-to-detect optical taps. This technique is not only capable of real-time monitoring of whether or not a fiber network has been breached by a difficult-to-detect source, it is also capable of determining the location and nature of the breach point in the network. For more details, see Luna publication
Similar questions