Write a detailed note on physical weathering.
Answers
Physical weathering is caused by the effects of changing temperature on rocks, causing the rock to break apart. The process is sometimes assisted by water.
There are two main types of physical weathering:
➡Freeze-thaw occurs when water continually seeps into cracks, freezes and expands, eventually breaking the rock apart.
➡Exfoliation occurs as cracks develop parallel to the land surface a consequence of the reduction in pressure during uplift and erosion.
Earth Eclipse
Share
Tweet
Share
What is Physical Weathering?
Physical weathering is also referred to as mechanical weathering. It is the weakening of rocks followed by disintegration due to the physical or mechanical forces including the actions on the rocks by abrasion, frost chattering, temperature fluctuations and salt crystal growth.
External environmental forces such as wind, water waves, and rain also consistently exert pressure on the rock structures resulting in accelerated disintegration. Physical weathering does not involve any chemical changes because the chemical composition of the rocks is never altered. Below is how the process occurs and the types of mechanical/physical weathering.
According to Wikipedia,
“Physical weathering, also known as mechanical weathering, is the class of processes that causes the disintegration of rocks without chemical change. The primary process in physical weathering is abrasion (the process by which clasts and other particles are reduced in size). However, chemical and physical weathering often go hand in hand. Physical weathering can occur due to temperature, pressure, frost etc. For example, cracks exploited by physical weathering will increase the surface area exposed to chemical action, thus amplifying the rate of disintegration.”
physical-weathering-rocks
Learn more about Chemical Weathering.
Processes of Physical/Mechanical Weathering
Mechanical or physical weathering is a process that constantly takes place since nature influences it. The process usually happens near the surface of the earth influenced by wind, water, and temperature.
Wind
The physical forces of wind act on the loose rocks, leaving them sculptured and denudated. Wind forces carry small particles and rocks that collide with the rocks, in turn, wearing then away. The forces of wind on physical/mechanical weathering are common in sandstorms in deserts.
Water and Glacial Materials
Water, on the other hand, gets into the rocks and once inside the rocks and freezes. The frozen water expands and causes the rocks to weaken and widens the cracks. In the long-run, the bigger rocks are broken into smaller and smaller fragments. Moving ice in glacial areas also washes away rock fragments and disintegrates them into smaller pieces as the rocks interact with the forces and pressure of the frozen materials.
Temperature Fluctuations
Fluctuations in temperature contribute to thermal stress. This is the contraction and expansion effect on the rocks because of temperature changes. Because of the uneven expansion and contraction, the rocks crack and disintegrate into smaller pieces. Eventually, these processes make the rock break down into finer and finer pieces.
Types of Physical Weathering
The various categories of physical/mechanical weathering are determined by the natural processes and physical forces. They include:
Thermal Pressure
Changes in temperature contribute to expansion and contraction of the rocks. When the temperature of the rock rises, the rock expands and when the temperature of the rocks decreases, the rock contracts. Because the outer surface is more exposed than the inner surface, there is uneven contraction and expansion of the rock’s constituent minerals. This process results in physical stress, also termed as thermal pressure, which can crack or break the rock apart.
Rocks in the desert are highly affected by this process because during the day the temperatures are very high while in the night the temperatures are low. The continuous contraction and expansion during the day and night exert stress of two main types, thermal fatigue, and thermal shock, on the rocks which makes them to crack and eventually break into pieces. Wildfires can as well cause considerable weathering of the rocks as the intense heat rapidly expands the rock’s constituent minerals than normal.
Freeze-thaw
Freeze-thaw also refers to frost chattering or frost weathering. When water enters the rocks through the pores and cracks, it freezes. Once the frozen water is within the rocks, it expands by about 10% thus opening the cracks a bit wider. The pressure acting within the rocks is estimated at 30,000 pounds per square inch at -7.6°F.
Over time, the repeated frost cycles of ice formation and ice melt alongside the changes in weather make the rock split off, and bigger rocks are broken into smaller fragments. Frost weathering is common in mountain areas and very cold regions where the temperatures are about the freezing point of water.