Write a number of quadratic equations with real roots which do not change by squaring their roots
Answers
Answered by
3
Let the equation is,
ax2+bx+c=0ax2+bx+c=0
or a2x2+abx+ac=0a2x2+abx+ac=0
And let the root are αα and ββ
We know the equation whose roots are α2α2and β2β2 is
a(x−−√)2+bx−−√+c=0a(x)2+bx+c=0
ax+bx−−√+c=0ax+bx+c=0
bx−−√=−(ax+c)bx=−(ax+c)
square both sides,
b2x=a2x2+2acx+c2b2x=a2x2+2acx+c2
a2x2+(2ac−b2)x+c2a2x2+(2ac−b2)x+c2
Since the leading coefficients are same that means,
2ac−b2=ab2ac−b2=ab
c2=acc2=ac
We get c=0c=0 or c=ac=a and putting in first eqn
case 1: c=0c=0
−b2=ab−b2=ab
So, b=0b=0 or b=−ab=−a
case 2: c=ac=a
2a2−ab−b2=02a2−ab−b2=0
2a2−2ab+ab−b2=02a2−2ab+ab−b2=0
2a(a−b)+b(a−b)=02a(a−b)+b(a−b)=0
(a−b)(2a+b)=0(a−b)(2a+b)=0
b=ab=a or b=−2ab=−2a
The equation can be,
x2=0x2=0
x2−x=0x2−x=0
x2+x+1=0x2+x+1=0
x2−2x+1=0x2−2x+1=0
So the answer turns out to be,
4
ax2+bx+c=0ax2+bx+c=0
or a2x2+abx+ac=0a2x2+abx+ac=0
And let the root are αα and ββ
We know the equation whose roots are α2α2and β2β2 is
a(x−−√)2+bx−−√+c=0a(x)2+bx+c=0
ax+bx−−√+c=0ax+bx+c=0
bx−−√=−(ax+c)bx=−(ax+c)
square both sides,
b2x=a2x2+2acx+c2b2x=a2x2+2acx+c2
a2x2+(2ac−b2)x+c2a2x2+(2ac−b2)x+c2
Since the leading coefficients are same that means,
2ac−b2=ab2ac−b2=ab
c2=acc2=ac
We get c=0c=0 or c=ac=a and putting in first eqn
case 1: c=0c=0
−b2=ab−b2=ab
So, b=0b=0 or b=−ab=−a
case 2: c=ac=a
2a2−ab−b2=02a2−ab−b2=0
2a2−2ab+ab−b2=02a2−2ab+ab−b2=0
2a(a−b)+b(a−b)=02a(a−b)+b(a−b)=0
(a−b)(2a+b)=0(a−b)(2a+b)=0
b=ab=a or b=−2ab=−2a
The equation can be,
x2=0x2=0
x2−x=0x2−x=0
x2+x+1=0x2+x+1=0
x2−2x+1=0x2−2x+1=0
So the answer turns out to be,
4
Similar questions
Social Sciences,
7 months ago
Math,
7 months ago
Math,
1 year ago
Math,
1 year ago
Science,
1 year ago