Computer Science, asked by dhumalpratiksha10, 4 months ago

write a program you are given a list of integers and an integers k write an algorithm to find the number of elements in the list that are less than k​

Answers

Answered by deva36775
4

Answer:

Given a set of digits A[] in sorted order and two integers N and K, the task is to find how many numbers of length N are possible whose value is less than K and the digits are from the given set only. Note that you can use the same digit multiple times.

Examples:

Input: A[] = {0, 1, 5}, N = 1, K = 2

Output: 2

Only valid numbers are 0 and 1.

Input: A[] = {0, 1, 2, 5}, N = 2, K = 21

Output: 5

10, 11, 12, 15 and 20 are the valid numbers.

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Let d be the size of A[]. We can break this problem into three simpler cases.

When N is greater than the length of K, It is obvious that if the length of N is greater than the length of k or if d is equal to 0, no such number is possible.

When N is smaller than the length of K, then all possible combinations of digit of length N are valid. Also, we have to keep in mind that 0 can’t be in the first place. So, if A[] contains 0, the first place can be filled in (d – 1) ways. Since repetition is allowed and 0 can occupy the other places, rest N – 1 places can be filled in d * d * … * d(N – 1) times i.e. in dN – 1 ways. Therefore the answer is (d – 1) * (dN – 1) if A[] contains 0 else dN.

When N is equal to the length of K, this is the trickiest part. We need to use Dynamic Programming for this part. Construct a digit array of K. Let’s call it digit[]. Let First(i) be the number formed by taking the first i digits of it. Let lower[i] denote the number of elements in A[] which are smaller than i.

For example, First(2) of 423 is 42. If A[] = {0, 2} then lower[0] = 0, lower[1] = 1, lower[2] = 1, lower[3] = 2.

Generate N digit numbers by dynamic programming. Let dp[i] denote total numbers of length i which are less than first i digits of K.

Elements in dp[i] can be generated by two cases:

For all the numbers whose First(i – 1) is less than First(i – 1) of K, we can put any digit at ith index. Hence, dp[i] = dp[i] + (dp[i – 1] * d)

For all the numbers whose First(i – 1) is the same as First(i – 1) of K, we can only put those digits which are smaller than digit[i]. Hence, dp[i] = dp[i] + lower[digit[i]].

Finally we return dp[N]. Note: For the first index don’t include 0 if N is not 1 and dp[0]=0.

Below is the implementation of the above approach:

filter_none

edit

play_arrow

brightness_4

// C++ implementation of the approach  

#include <bits/stdc++.h>  

using namespace std;  

 

#define MAX 10  

 

// Function to convert a number into vector  

vector<int> numToVec(int N)  

{  

   vector<int> digit;  

 

   // Push all the digits of N from the end  

   // one by one to the vector  

   while (N != 0) {  

       digit.push_back(N % 10);  

       N = N / 10;  

   }  

 

   // If the original number was 0  

   if (digit.size() == 0)  

       digit.push_back(0);  

 

   // Reverse the vector elements  

   reverse(digit.begin(), digit.end());  

 

   // Return the required vector  

   return digit;  

}  

 

// Function to return the count of B length integers  

// which are less than C and they  

// contain digits from set A[] only  

int solve(vector<int>& A, int B, int C)  

{  

   vector<int> digit;  

   int d, d2;  

 

   // Convert number to digit array  

   digit = numToVec(C);  

   d = A.size();  

 

   // Case 1: No such number possible as the  

   // generated numbers will always  

   // be greater than C  

   if (B > digit.size() || d == 0)  

       return 0;  

 

   // Case 2: All integers of length B are valid  

   // as they all are less than C  

   else if (B < digit.size()) {  

       // contain 0  

       if (A[0] == 0 && B != 1)  

           return (d - 1) * pow(d, B - 1);  

       else

           return pow(d, B);  

   }  

 

   // Case 3  

   else {  

       int dp[B + 1] = { 0 };  

       int lower[MAX + 1] = { 0 };  

 

       // Update the lower[] array such that  

       // lower[i] stores the count of elements  

       // in A[] which are less than i  

       for (int i = 0; i < d; i++)  

           lower[A[i] + 1] = 1;  

       for (int i = 1; i <= MAX; i++)  

           lower[i] = lower[i - 1] + lower[i];  

 

       bool flag = true;  

       dp[0] = 0;  

       for (int i = 1; i <= B; i++) {  

           d2 = lower[digit[i - 1]];  

           dp[i] = dp[i - 1] * d;  

 

           // For first index we can't use 0  

           if (i == 1 && A[0] == 0 && B != 1)  

               d2 = d2 - 1;  

 

           // Whether (i-1) digit of generated number  

           // can be equal to (i - 1) digit of C  

           if (flag)  

               dp[i] += d2;  

 

           // Is digit[i - 1] present in A ?  

           flag = (flag & (lower[digit[i - 1] + 1]  

                           == lower[digit[i - 1]] + 1));  

       }  

       return dp[B];  

   }  

}  

 

// Driver code  

int main()  

{  

 

   // Digits array  

   vector<int> A = { 0, 1, 2, 5 };  

   int N = 2;  

   int k = 21;  

 

   cout << solve(A, N, k);  

 

   return 0;  

}  

Output:

5

Time complexity: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

Explanation:

Similar questions