Write a quadratic polynomial ,sum of whose zeroes is -3 & product is 2 .
Answers
Answer:
6
is the answer
hope it may be correct
Given:-
Sum of zeroes = 2
Product of zeroes = -8
To find:-
A quadratic Polynomial
Assumption:-
Let sum of zeroes be \alpha+\betaα+β = 2
Let the product of zeroes be \alpha\betaαβ = -8
Solution:-
We know,
Quadratic Equation is always in the form of:-
\sf{x^2 + (\alpha+\beta)x + \alpha\beta}x2+(α+β)x+αβ
Substituting the values,
\sf{x^2 + 2\times x + (-8)}x2+2×x+(−8)
= \sf{x^2 + 2x -8}x2+2x−8
Therefore the quadratic Polynomial is\sf{ x^2 + 2x - 8}x2+2x−8
______________________________________
Verification:-
Let us find out the zeroes of polynomial
x² + 2x - 8
= \sf{x^2 + 2x - 8}x2+2x−8
By splitting the middle term,
\sf{x^2 + 4x - 2x - 8}x2+4x−2x−8
= \sf{x(x+4) -2(x+4)}x(x+4)−2(x+4)
= \sf{(x+4)(x-2)}(x+4)(x−2)
Either,
\sf{x+4 = 0}x+4=0
= \sf{x = -4}x=−4
Or,
\sf{x-2 = 0}x−2=0
= \sf{x = 2}x=2
Now Let us find the sum of product of zeroes,
\sf{Sum\:of\:zeroes = \dfrac{-Coefficient\:of\:x}{Coefficient\:of\:x^2}}Sumofzeroes=Coefficientofx2−Coefficientofx
= \sf{-4+2 = \dfrac{-2}{1}}−4+2=1−2
= \sf{-2 = -2}−2=−2 [Verified]
\sf{Product\:of\:zeroes = \dfrac{Constant\:Term}{Coefficient\:of\:x^2}}Productofzeroes=Coefficientofx2ConstantTerm
= \sf{4\times (-2) = \dfrac{-8}{1}}4×(−2)=1−8
= \sf{-8 = -8}−8=−8 [Verified]
Therefore the Quadratic Equation is \sf{\boxed{\sf{x^2 + 2x - 8}}}x2+2x−8 Hence Verified.
_____________________________________