Math, asked by as1673232, 2 months ago

write an a.p. whose first term is a and common difference is d in each of the following
1) a = –7,d = one upon two​

Answers

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf \:Given -\begin{cases} &\sf{An \:  A.P. \:  series \:  in  \: which } \\ &\sf{first \: term  \: (a) =  -  \: 7}\\ &\sf{common \: difference \: (d) \: = \: \dfrac{1}{2}  } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \:To\: find - \begin{cases} &\sf{An \:  A.P.  \: series}  \end{cases}\end{gathered}\end{gathered}

\large\underline{\bold{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\:\:{\underline{{\boxed{\bf{{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

According to statement,

It is given that

 \tt \: a_1 \:  =  \:  -  \: 7 \:  \: and \:  \: d \:  =  \: \dfrac{1}{2}

So,

Second term, is

 \tt \: a_2 \:  =  \: a \:  +  \: (2 - 1) \: d

\tt \: a_2 \:  =  \: a \:  +  \: d

\bf \: a_2 \:   =  \:  -  \: 7 \:  +  \: \dfrac{1}{2}  = \dfrac{ - 14 + 1}{2}  =  -  \: \dfrac{13}{2}

Third term, is

\tt \: a_3 \:  =  \: a \:  +  \: (3 \:  -  \: 1) \: d

\tt \: a_3 \:  =  \: a \:  +  \: 2 \: d

\bf \: a_3 \:  =  \:  -  \: 7 \:  + \cancel2 \times \dfrac{1}{\cancel2}  =  - 7 + 1 =  -  \: 6

Fourth term, is

\tt \: a_4 \:  =  \: a \:  +  \: (4 \:  -  \: 1) \: d

\tt \: a_4 \:  =  \: a \:  +  \: 3 \: d

\bf \: a_4 \:  =  \:  -  \: 7 \:  +  \: 3 \times \dfrac{1}{2}  = \dfrac{ - 14 + 3}{2}  =  -  \: \dfrac{11}{2}

Hence,

The required A.P. series is

 \bf \:  - 7, \:  -  \: \dfrac{13}{2} , \:  - 6, \:  -  \: \dfrac{11}{2} , \:  -  -  -  -

Additional Information :-

\begin{gathered}\:\:{\underline{{\boxed{\bf{{S_n\:= \: \dfrac{n}{2} \: ( \: 2 \:a\:+\:(n\:-\:1)\:d \: )}}}}}} \\ \end{gathered}

\begin{gathered}\:\:{\underline{{\boxed{\bf{{S_n\:=\dfrac{n}{2}( \:a\:+\:a_n)}}}}}} \\ \end{gathered}

 \bf \: 3 \: numbers \: in \: A.P. \: are \: a - d,a,a + d

 \bf \: 4 \: numbers \: in \: A.P. \: are \: a - 3d,a - d,a + d,a + 3d

Similar questions