write any three differences between transverse wave and longitudinal wave
Answers
Answered by
0
Transverse Waves: Displacement of the medium is perpendicular to the direction of propagation of the wave.
To understand this it is good to think of a rope being held still by person B and being moved up and down by person A. The direction of propagation is from person A to B, so you will see the waves move along this way. But the displacement will be up and down.
Can travel in solids, but not in liquids and gas.
eg. Electromagnetic radiation
Longitudinal Waves: Displacement of the medium is parallel to the direction of propagation of the wave.
A good example for this is a slinky being pushed along the table, the propagation will be along the table and so will the displacement of all the 'rings'.
Can travel through all states of matter.
eg. Sound waves
Plz mark it as brainlest answer
To understand this it is good to think of a rope being held still by person B and being moved up and down by person A. The direction of propagation is from person A to B, so you will see the waves move along this way. But the displacement will be up and down.
Can travel in solids, but not in liquids and gas.
eg. Electromagnetic radiation
Longitudinal Waves: Displacement of the medium is parallel to the direction of propagation of the wave.
A good example for this is a slinky being pushed along the table, the propagation will be along the table and so will the displacement of all the 'rings'.
Can travel through all states of matter.
eg. Sound waves
Plz mark it as brainlest answer
Answered by
1
Transverse Waves: Displacement of the medium is perpendicular to the direction of propagation of the wave.
To understand this it is good to think of a rope being held still by person B and being moved up and down by person A. The direction of propagation is from person A to B, so you will see the waves move along this way. But the displacement will be up and down.
Can travel in solids, but not in liquids and gas.
eg. Electromagnetic radiation
Longitudinal Waves: Displacement of the medium is parallel to the direction of propagation of the wave.
A good example for this is a slinky being pushed along the table, the propagation will be along the table and so will the displacement of all the 'rings'.
Can travel through all states of matter.
eg. Sound waves
To understand this it is good to think of a rope being held still by person B and being moved up and down by person A. The direction of propagation is from person A to B, so you will see the waves move along this way. But the displacement will be up and down.
Can travel in solids, but not in liquids and gas.
eg. Electromagnetic radiation
Longitudinal Waves: Displacement of the medium is parallel to the direction of propagation of the wave.
A good example for this is a slinky being pushed along the table, the propagation will be along the table and so will the displacement of all the 'rings'.
Can travel through all states of matter.
eg. Sound waves
Similar questions