Physics, asked by cksharma1978, 6 months ago

write disadvantage of series combinations​

Answers

Answered by senthilchitra953
0

Explanation:

hi I am interested in the position and would like to know if you have any questions please feel free to contact me at any time and I will be there at least have a great day and I will be there at least one more happy returns of the day and I will be there at least one of us will be there at least one of us will be there at least one of us will be there at least one of us will be

Answered by jashan4924
0

Answer:

Question:

If tan θ = ¹/√7 then , show that \sf \dfrac{csc^2\theta-sec^2\theta}{csc^2\theta+sec^2\theta}=\dfrac{3}{4}

csc

2

θ+sec

2

θ

csc

2

θ−sec

2

θ

=

4

3

\huge\bold{Solution :}Solution:

★══════════════════════★

\sf tan\ \theta=\dfrac{1}{\sqrt{7}}tan θ=

7

1

:\to \sf tan^2\theta=\dfrac{1}{(\sqrt{7})^2}:→tan

2

θ=

(

7

)

2

1

:\to \sf \textsf{\textbf{\pink{tan$^\text{2} \boldsymbol \theta\ $ =\ $\dfrac{\text{1}}{\text{7}}$}}}\ \; \bigstar:→tan

2

θ =

7

1

\sf \dfrac{1}{cot\ \theta}=\dfrac{1}{\sqrt{7}}

cot θ

1

=

7

1

:\to \sf cot\ \theta=\sqrt{7}:→cot θ=

7

:\to \sf cot^2\theta=(\sqrt{7})^2:→cot

2

θ=(

7

)

2

:\to \sf \textsf{\textbf{\green{cot$^\text{2}\ \boldsymbol \theta $\ =\ 7}}}\ \; \bigstar:→cot

2

θ = 7 ★

★══════════════════════★

LHS

:\to \bf \blue{\dfrac{csc^2\theta-sec^2\theta}{csc^2\theta+sec^2\theta}}:→

csc

2

θ+sec

2

θ

csc

2

θ−sec

2

θ

From Trigonometric identities ,

csc²θ = 1 + cot²θ

sec²θ = 1 + tan²θ

:\to \sf \dfrac{(1+cot^2\theta)-(1+tan^2\theta)}{(1+cot^2\theta)+(1+tan^2\theta)}:→

(1+cot

2

θ)+(1+tan

2

θ)

(1+cot

2

θ)−(1+tan

2

θ)

tan²θ = ¹/₇

cot²θ = 7

:\to \sf \dfrac{(1+7)-(1+\frac{1}{7})}{(1+7)+(1+\frac{1}{7})}:→

(1+7)+(1+

7

1

)

(1+7)−(1+

7

1

)

:\to\ \sf \dfrac{8-\frac{8}{7}}{8+\frac{8}{7}}:→

8+

7

8

8−

7

8

:\to\ \sf \dfrac{48}{64}:→

64

48

:\to\ \textsf{\textbf{\orange{$\dfrac{\text{3}}{\text{4}}$}}}\ \; \bigstar:→

4

3

Similar questions