Math, asked by anishkarajput181, 5 months ago


Write down the equation of the line parallel to x - 2y + 8 = 0 passing through the point (1, 2).​

Answers

Answered by amansharma264
33

EXPLANATION.

→ equation of line parallel to → x - 2y + 8 = 0

→ passing through the point (1,2)

→ slope of the parallel lines = -a/b

→ x - 2y + 8 = 0 → -1/ -2 = 1/2

equation of line.

→ ( y - y¹ ) = m ( x - x¹ )

→ ( y - 2 ) = 1/2 ( x - 1 )

→ 2 ( y - 2 ) = x - 1

→ 2y - 4 = x - 1

→ x - 2y = -3 = 0

More information.

(1) = Slope formula.

→ line joining two point ( x¹ , y¹ ) and ( x² , y ² )

→ ( y² - y¹ ) / ( x² - x¹ )

→ y² → denotes = y2

→ x² → denotes = x2

(2) = angle between two straight lines.

 \sf :  \implies \:  \tan( \theta)  =  | \dfrac{ m_{1} -  m_{2}  }{1 +  m_{1} m_{2}} |

(3) = Two lines.

→ ax + by + c = 0 and a'x + b'y + c = 0

are two lines.

 \sf :  \implies \: parallel \: if \:  \dfrac{a}{a '}  =  \dfrac{b}{b '}  \ne \:  \dfrac{c}{c '}

→ perpendicular if → aa' + bb' = 0

→ Distance between two parallel lines.

 \sf :  \implies \:  =  | \dfrac{ c_{1} -  c_{2}  }{ \sqrt{ {a}^{2} +  {b}^{2}  } } |

Answered by rocky200216
55

\huge\bf{\underline{\underline{\gray{GIVEN:-}}}}

  • The equation of a line is 'x - 2y + 8 = 0' .

  • And the line passes through a point (1 , 2) .

 \\

\huge\bf{\underline{\underline{\gray{TO\:FIND:-}}}}

  • The equation of the line .

 \\

\huge\bf{\underline{\underline{\gray{SOLUTION:-}}}}

✪ The slope of the line is,

\bf{\implies\:Slope\:=\:-\Big(\dfrac{1}{-2}\Big)\:} \\

\bf\green{\implies\:Slope\:=\:\dfrac{1}{2}\:} \\

☞︎︎︎ Let the required line be,

  • \bf\red{y\:=\:ln\:x\:+\:c} \\

\bf{\implies\:y\:=\:\dfrac{1}{2}\:x\:+\:c\:} \\ ----(1)

☯︎ According to the question, the line passes through a point (1 , 2) .

\rm{\implies\:2\:=\:\dfrac{1}{2}\times{1}\:+\:c\:} \\

\rm{\implies\:2\:=\:\dfrac{1}{2}\:+\:c\:} \\

\rm{\implies\:c\:=\:2\:-\:\dfrac{1}{2}\:} \\

\rm{\implies\:c\:=\:\dfrac{4\:-\:1}{2}\:} \\

\bf{\implies\:c\:=\:\dfrac{3}{2}\:} \\

☞︎︎︎ Now, putting the value of 'c' in the equation 1,

\rm{\implies\:y\:=\:\dfrac{1}{2}\:x\:+\:\dfrac{3}{2}\:} \\

\rm{\implies\:y\:=\:\dfrac{x\:+\:3}{2}\:} \\

\rm{\implies\:2y\:=\:x\:+\:3\:} \\

\bf\purple{\implies\:\:x\:-\:2y\:+\:3\:=\:0\:} \\

\huge\orange\therefore The required equation of the line is 'x - 2y + 3 = 0' .

Similar questions