write down the formula for cosnθsin nθ.
Answers
Answered by
1
Answer:
cos6θ=cos(2×3θ)=2cos23θ−1=2(4cos3θ−3cosθ)2−1=32cos6θ−48cos4θ+18cos2θ−1. ADDED: From the definition of the Chebyshev polynomials Tn(x)=cos(narccosx)⇔Tn(cosθ)=cosnθ,θ=arccosx, we get T1(x)=cos(arccosx)=xT2(x)=cos(2arccosx)=2x2−1.
i hope it help
mark a brainlist answer
Answered by
0
Answer:
Cos Theta=Base/Hypertenuse (B/H)
Sin Theta=Perpendicular/Hypertenuse (P/H)
Similar questions