write down the general form of A.p
Answers
Answered by
1
Arthematic progression
Answered by
4
The general form of an Arithmetic Progress is {a, a + d, a + 2d, a + 3d, a + 4d, a + 5d, ..........}, where ‘a’ is known as the first term of the Arithmetic Progress and ‘d’ is known as the common difference (C.D.).
If a is the first term and d is the common difference of an Arithmetic Progress, then its nth term is a + (n - 1)d.
Let a11, a22, a33, a44, ........, ann, .................. be the given Arithmetic Progress. Then a11 = first term = a
By the definition, we have
a22 - a11 = d
⇒ a22 = a11 + d
⇒ a22 = a + d
⇒ a22 = (2 - 1)a + d:
a33 - a22 = d
⇒ a33 = a22 + d
⇒ a33 = (a + d) + d
⇒ a33 = a + 2d
⇒ a33 = (3 - 1)a + d:
a44 - a33 = d
⇒ a44 = a33 + d
⇒ a44 = (a + 2d) + d
⇒ a44 = a + 3d
⇒ a44 = (4 - 1)a + d:
a55 - a44 = d
⇒ a55 = a44 + d
⇒ a55 = (a + 3d) + d
⇒ a55 = a + 4d
⇒ a55 = (5 - 1)a + d:
Similarly, a66 = (6 - 1)a + d:
a77 = (7 - 1)a + d:
ann = a + (n - 1)d.
Therefore, nth term of an Arithmetic Progress whose first term = ‘a’ and common difference = ‘d’ is ann = a + (n - 1)d.
If a is the first term and d is the common difference of an Arithmetic Progress, then its nth term is a + (n - 1)d.
Let a11, a22, a33, a44, ........, ann, .................. be the given Arithmetic Progress. Then a11 = first term = a
By the definition, we have
a22 - a11 = d
⇒ a22 = a11 + d
⇒ a22 = a + d
⇒ a22 = (2 - 1)a + d:
a33 - a22 = d
⇒ a33 = a22 + d
⇒ a33 = (a + d) + d
⇒ a33 = a + 2d
⇒ a33 = (3 - 1)a + d:
a44 - a33 = d
⇒ a44 = a33 + d
⇒ a44 = (a + 2d) + d
⇒ a44 = a + 3d
⇒ a44 = (4 - 1)a + d:
a55 - a44 = d
⇒ a55 = a44 + d
⇒ a55 = (a + 3d) + d
⇒ a55 = a + 4d
⇒ a55 = (5 - 1)a + d:
Similarly, a66 = (6 - 1)a + d:
a77 = (7 - 1)a + d:
ann = a + (n - 1)d.
Therefore, nth term of an Arithmetic Progress whose first term = ‘a’ and common difference = ‘d’ is ann = a + (n - 1)d.
Similar questions