Math, asked by rafsf1458, 1 year ago

Write each of the following expressions as log N. Determine the value of N. (You can assume the base is 10, but the results are identical which ever base is used).(i) log 2 + log 5 (ii) log 16 - log 2 (iii) 3 log 4(iv) 2 log 3 - 3 log 2 (v) log243 + log1 (vi) log 10 + 2 log 3 - log 2

Answers

Answered by gogiya167
10

(i) log 2 + log 5

logm+logn=log(m*n)=logN

log2+log5=log(2*5)=logN=log10

So, N=10

(ii) log 16 - log 2

logm-logn=log(m/n)=logN

log16-log2=log(16/2)=logN=log8

Hence, N =8

(iii) 3 log 4

xlogy=logy^{x}

3log4=log4^{3}=log64=logN

N =64

(iv) 2 log 3 - 3 log 2

2log3=log3^{2}=log9

3log2=log2^{3}=log8

log9-log8=log(9/8)=log(1.125)

N=1.125

(v) log243 + log1

log1=0

So,log243 + log1 =log243=logN

N=243

(vi) log 10 + 2 log 3 - log 2

   2log3=log3^{2}=log9

log9-log2=log(9/2)=log4.5

log4.5+log10=log45=logN

N=45.


Answered by pawanshs9c
1

Answer:

(I)a n=10

(ii)a n=8

(iii)a n=64

(iv)a n=1.125

(v)a n=243

(vi)a n=45

Similar questions