Write each of the following expressions as log N. Determine the value of N. (You can assume the base is 10, but the results are identical which ever base is used).(i) log 2 + log 5 (ii) log 16 - log 2 (iii) 3 log 4(iv) 2 log 3 - 3 log 2 (v) log243 + log1 (vi) log 10 + 2 log 3 - log 2
Answers
Answered by
10
(i) log 2 + log 5
=log10
So, N=10
(ii) log 16 - log 2
=log8
Hence, N =8
(iii) 3 log 4
=log64=logN
N =64
(iv) 2 log 3 - 3 log 2
=log9
=log8
log9-log8=log(9/8)=log(1.125)
N=1.125
(v) log243 + log1
log1=0
So,log243 + log1 =log243=logN
N=243
(vi) log 10 + 2 log 3 - log 2
=log9
log9-log2=log(9/2)=log4.5
log4.5+log10=log45=logN
N=45.
Answered by
1
Answer:
(I)a n=10
(ii)a n=8
(iii)a n=64
(iv)a n=1.125
(v)a n=243
(vi)a n=45
Similar questions