Math, asked by brainlyshacker58, 9 months ago

Write first four terms of the A.P. when the first term a and the common difference are given as follows:

(i) a = 10, d = 10
(ii) a = -2, d = 0
(iii) a = 4, d = – 3
(iv) a = -1 d = 1/2
(v) a = – 1.25, d = – 0.25

Answers

Answered by rukumanikumaran
28

hope this helps u

General form of an AP.:

a, a+d, a+2d, a+3d…….

Here a is the first term and d is common difference.

Solution:

(i) Given:a = 10, d = 10

Let the series be a1, a2, a3, a4, a5 …

a1 = a = 10

a2 = a1 + d = 10 + 10 = 20

a3 = a2 + d = 20 + 10 = 30

a4 = a3 + d = 30 + 10 = 40

a5 = a4 + d = 40 + 10 = 50

 the series will be 10, 20, 30, 40, 50 …

First four terms of this A.P. will be 10, 20, 30, and 40.

(ii)Given: a = – 2, d = 0Let the series be a1, a2, a3, a4 …

a1 = a = -2

a2 = a1 + d = – 2 + 0 = – 2

a3 = a2 + d = – 2 + 0 = – 2

a4 = a3 + d = – 2 + 0 = – 2

 the series will be – 2, – 2, – 2, – 2 …

First four terms of this A.P. will be – 2, – 2, – 2 and – 2.

(iii) Given:a = 4, d = – 3Let the series be a1, a2, a3, a4 …

a1 = a = 4

a2 = a1 + d = 4 – 3 = 1

a3 = a2 + d = 1 – 3 = – 2

a4 = a3 + d = – 2 – 3 = – 5

 the series will be 4, 1, – 2 – 5 …

First four terms of this A.P. will be 4, 1, – 2 and – 5.

(iv) Given:a = – 1, d = 1/2Let the series be a1, a2, a3, a4 …a1 = a = -1

a2 = a1 + d = -1 + 1/2 = -1/2

a3 = a2 + d = -1/2 + 1/2 = 0

a4 = a3 + d = 0 + 1/2 = 1/2

the series will be-1, -1/2, 0, 1/2

First four terms of this A.P. will be -1, -1/2, 0 and 1/2.

(v)Given: a = – 1.25, d = – 0.25Let the series be a1, a2, a3, a4 …

a1 = a = – 1.25

a2 = a1 + d = – 1.25 – 0.25 = – 1.50

a3 = a2 + d = – 1.50 – 0.25 = – 1.75

a4 = a3 + d = – 1.75 – 0.25 = – 2.00

 the series will be 1.25, – 1.50, – 1.75, – 2.00 ……..

First four terms of this A.P. will be – 1.25, – 1.50, – 1.75 and – 2.00.

Answered by ThakurRajSingh24
28

SOLUTION :-

(i) a = 10, d = 10

•Let us consider, the Arithmetic Progression series be a1, a2, a3, a4, a5 …

=>a1 = a = 10

=>a2 = a1+d = 10+10 = 20

=>a3 = a2+d = 20+10 = 30

=>a4 = a3+d = 30+10 = 40

=>a5 = a4+d = 40+10 = 50

And so on…

Therefore, the A.P. series will be 10, 20, 30, 40, 50 …

And First four terms of this A.P. will be 10, 20, 30, and 40.

(ii) a = – 2, d = 0

•Let us consider, the Arithmetic Progression series be a1, a2, a3, a4, a5 …

=>a1 = a = -2

=>a2 = a1+d = – 2+0 = – 2

=>a3 = a2+d = – 2+0 = – 2

=>a4 = a3+d = – 2+0 = – 2

Therefore, the A.P. series will be – 2, – 2, – 2, – 2 …

And, First four terms of this A.P. will be – 2, – 2, – 2 and – 2.

(iii) a = 4, d = – 3

•Let us consider, the Arithmetic Progression series be a1, a2, a3, a4, a5 …

=>a1 = a = 4

=>a2 = a1+d = 4-3 = 1

=>a3 = a2+d = 1-3 = – 2

=>a4 = a3+d = -2-3 = – 5

Therefore, the A.P. series will be 4, 1, – 2 – 5 …

And, First four terms of this A.P. will be 4, 1, – 2 and – 5.

(iv) a = – 1, d = 1/2

•Let us consider, the Arithmetic Progression series be a1, a2, a3, a4, a5 …

=>a2 = a1+d = -1+1/2 = -1/2

=>a3 = a2+d = -1/2+1/2 = 0

=>a4 = a3+d = 0+1/2 = 1/2

Thus, the A.P. series will be-1, -1/2, 0, 1/2

And First four terms of this A.P. will be -1, -1/2, 0 and 1/2.

(v) a = – 1.25, d = – 0.25

•Let us consider, the Arithmetic Progression series be a1, a2, a3, a4, a5 …

=>a1 = a = – 1.25

=>a2 = a1 + d = – 1.25-0.25 = – 1.50

=>a3 = a2 + d = – 1.50-0.25 = – 1.75

=>a4 = a3 + d = – 1.75-0.25 = – 2.00

Therefore, the series will be 1.25, – 1.50, – 1.75, – 2.00 ……..

And first four terms of this A.P. will be – 1.25, – 1.50, – 1.75 and – 2.00.

Similar questions