Math, asked by abhishekdogra878, 1 year ago

Write $\frac{sin \theta}{1+cos \theta}$ in the terms of $tan \frac{\theta}{2}$

Answers

Answered by MarkAsBrainliest
1

Proof :

Now,

\large{\frac{sin\theta}{1+cos\theta}}

\large{=\frac{2sin\frac{\theta}{2}cos\frac{\theta}{2}}{2 {cos}^{2}\frac{\theta}{2}}\{\because{cos}^{2}x-{sin}^{2}x=cos2x\}}

\large{=\frac{sin\frac{\theta}{2}}{cos\frac{\theta}{2}}}

\large{=tan\frac{\theta}{2}}

\implies\boxed{\bold{\frac{sin\theta}{1+cos\theta}=tan\frac{\theta}{2}}}

Hence, proved.

#MarkAsBrainliest

Similar questions