Math, asked by prem777, 1 year ago

write in logarithmic form:-E=1/2*mv^2

Attachments:

Answers

Answered by parisakura98pari
42
E = 1/2 mv²  

Log E = Log(1/2 mv²) = Log1/2 + Log m + Log v²
Log E = Log (1/2) + Log m + 2Log v
          =  Log 1 - Log 2 + Log m + 2Log v = 0 - 0.301 + Logm + 2log v
 
Hope this assists.
Answered by pulakmath007
5

The logarithm form is :

\displaystyle \sf{log \:E = log \: m + 2 \: log \: v - log \: 2   }

Given :

\displaystyle \sf{  }E =  \frac{1}{2} m {v}^{2}

To find :

The logarithm form

Formula :

We are aware of the formula on logarithm that

 \sf{1.  \:  \: \:  log( {a}^{n} ) = n log(a)  }

 \sf{2. \:  \:  log(ab) =  log(a)   +  log(b) }

 \displaystyle \sf{3. \:  \:  log \bigg( \frac{a}{b}  \bigg)  =  log(a) -  log(b)  }

 \sf{4. \:  \:   log_{a}(a)   = 1}

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf{  }E =  \frac{1}{2} m {v}^{2}

Step 2 of 2 :

Express in logarithm form

\displaystyle \sf{  }E =  \frac{1}{2} m {v}^{2}

Taking logarithm in both sides we get

\displaystyle \sf{  }log \: E = log \: \bigg[ \frac{1}{2} m {v}^{2}\bigg]

\displaystyle \sf{ \implies }log \: E = log \: \bigg(\frac{1}{2} \bigg)  + log \:m + log \:( {v}^{2})\:  \:  \: \bigg[ \:  \because \:log(ab) =  log(a)   +  log(b) \bigg]

\displaystyle \sf{ \implies }log \: E = \bigg(log \: 1 -log \: 2  \bigg)  + log \:m + 2log \:v\:  \:  \: \bigg[ \:  \because \:log( {a}^{n} ) = n log(a) \bigg]

\displaystyle \sf{ \implies }log \: E =  -log \: 2   + log \:m + 2log \:v

\displaystyle \sf{ \implies }log \: E =     log \:m + 2log \:v-log \: 2

Which is the required logarithm form of the expression

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

2. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

#SPJ3

Similar questions