Math, asked by kaurpushpinder77621, 1 year ago

Write integrating factor of the differncial equation 1-x2 dy/dx -xy=1

Answers

Answered by AddyK
1

Answer:

\sqrt{1-x^{2} }

Step-by-step explanation:

Given Eqn.

1 - x^{2} \frac{dy}{dx} -xy = 1

or  \frac{dy}{dx} - (\frac{x}{1 - x^{2} })y = \frac{1}{1 - x^{2} }

or   \frac{dy}{dx} + (-\frac{x}{1 - x^{2} } )y  = \frac{1}{1 - x^{2} }

Comparing above Eqn with

\frac{dy}{dx} + Py = Q

Here,

          P = \frac{-x}{1 - x^{2} }

 

          Integrating factor = I.F. = e^{\int {P} \, dx }

I.F. = e^{\int {\frac{-x}{1 - x^{2} } } \, dx }

Let I = \int {\frac{-x}{1-x^{2} } \, dx

Let ( 1 - x^{2} ) = t

differentiating w.r.t x

\frac{dt}{dx} = -2x

or \frac{dt}{2} = -x dx

I = \int {\frac{1}{2t} } \, dt

on integration

I = \frac{ln(t)}{2}

substituting t with 1 - x^{2}

I = \frac{1}{2} ln(1 - x^{2} )

or  I = ln(1-x^{2}) ^{\frac{1}{2} }                     {  a(logb) = log(b^{a} )  }

so

I.F. = e^{ln(1-x^{2} )^{\frac{1}{2} } }

or I.F. = (1-x^{2} )^{\frac{1}{2}(ln(e)) }        { a^{ln(b)} = b^{ln(a)} }

or I.F. = (1-x^{2} )^{\frac{1}{2} }                                     { ln(e) = 1 }

or integrating factor = \sqrt{1-x^{2} }

Similar questions