write the area and perimeter of different kinds of quadrilaterals namely .
a) square
b) rectangle
c)parallelogram
d) rombus
e)trapegium
Answers
Answered by
0
1.Area =pie r^2 Perimeter=4×Side
2.Area= Length×Breadth
Perimeter=2(l+b)
3.Area=Base×Height
Perimeter=2(b+h)
4.Area= 1/2×d1×d2 where d are the diagonals
or b×a where a is altitude
Perimeter=4×S
5.Area=1/2×(a+b)×h where a and b are the sides and h is height.
Perimeter=Sum of all sides
May this help uh
2.Area= Length×Breadth
Perimeter=2(l+b)
3.Area=Base×Height
Perimeter=2(b+h)
4.Area= 1/2×d1×d2 where d are the diagonals
or b×a where a is altitude
Perimeter=4×S
5.Area=1/2×(a+b)×h where a and b are the sides and h is height.
Perimeter=Sum of all sides
May this help uh
Answered by
0
Hey! ! !
Mate :-
Answer :-
Perimeter formula
☆ Square
4 × side
☆ Rectangle
2 × (length + width)
☆ Parallelogram
2 × (side1 + side2)
☆ Triangle
side1 + side2 + side3
☆ Regular n-polygon
n × side
☆ Trapezoid
height × (base1 + base2) / 2
☆ Trapezoid
base1 + base2 + height × [csc(theta1) + csc(theta2)]
☆ Circle
2 × pi × radius
☆ Ellipse
4 × radius1 × E(k,pi/2)
E(k,pi/2) is the Complete Elliptic Integral of the Second Kind
k = (1/radius1) × sqrt(radius12 - radius22)
Mate :-
Answer :-
Perimeter formula
☆ Square
4 × side
☆ Rectangle
2 × (length + width)
☆ Parallelogram
2 × (side1 + side2)
☆ Triangle
side1 + side2 + side3
☆ Regular n-polygon
n × side
☆ Trapezoid
height × (base1 + base2) / 2
☆ Trapezoid
base1 + base2 + height × [csc(theta1) + csc(theta2)]
☆ Circle
2 × pi × radius
☆ Ellipse
4 × radius1 × E(k,pi/2)
E(k,pi/2) is the Complete Elliptic Integral of the Second Kind
k = (1/radius1) × sqrt(radius12 - radius22)
Similar questions
Square
4 × side
Rectangle
2 × (length + width)
Parallelogram
2 × (side1 + side2)
Triangle
side1 + side2 + side3
Regular n-polygon
n × side
Trapezoid
height × (base1 + base2) / 2
Trapezoid
base1 + base2 + height × [csc(theta1) + csc(theta2)]
Circle
2 × pi × radius
Ellipse
4 × radius1 × E(k,pi/2)
E(k,pi/2) is the Complete Elliptic Integral of the Second Kind
k = (1/radius1) × sqrt(radius12 - radius22)