Math, asked by gilkennethsanmiguel, 1 month ago

Write the complex number z= \frac{(1-\sqrt{3}i)^{2015} }{[\sqrt{2}cis(\frac{7\pi}{6})]^{4028}} in an exponential form.

Answers

Answered by senboni123456
10

Step-by-step explanation:

We have,

z= \frac{(1-\sqrt{3}i)^{2015} }{[\sqrt{2}cis(\frac{7\pi}{6})]^{4028}} \\

 \implies \: z= \frac{ ({2})^{2015}  \dfrac{(1-\sqrt{3}i)^{2015}}{ {2}^{(2015)} } }{[\sqrt{2} {e}^{\frac{7\pi}{6}}]^{4028}} \\

 \implies \: z= \frac{ ({2})^{2015}  \bigg( \dfrac{1}{2} - \dfrac{ \sqrt{3} }{2} i \bigg)^{2015} }{(2)^{2014}  ({e}^{\frac{7\pi}{6}}) ^{4028}} \\

 \implies \: z= \frac{ ({2})^{2015 - 2014}  \bigg \{  \cos \bigg( \dfrac{11\pi}{6}  \bigg)   + i \sin \bigg(\dfrac{ 11\pi }{6} \bigg)  \bigg \}^{2015} }{ {e}^{(\frac{7\pi}{6} \times 4028)}} \\

 \implies \: z= \frac{2  \{   {e}^{ \frac{11\pi}{6} }   \}^{2015} }{ {e}^{(\frac{7\pi}{6} \times 4028)}} \\

 \implies \: z= \frac{2    {e}^{ \frac{11\pi}{6}  \times 2015 }}{ {e}^{(\frac{7\pi}{6} \times 4028)}} \\

 \implies \: z= 2    {e}^{ \frac{11\pi}{6}  \times 2015 - \frac{7\pi}{6} \times 4028} \\

 \implies \: z= 2    {e}^{ \frac{\pi}{6}(11  \times 2015 - 7 \times 4028)} \\

 \implies \: z= 2    {e}^{ \frac{\pi}{6}(22165 - 28196)} \\

 \implies \: z= 2    {e}^{ \frac{\pi}{6}( - 6031)} \\

 \implies \: z= 2    {e}^{ -  \frac{\pi}{6} \times  6031} \\

 \implies \: z= 2    {e}^{ -  (1005)\pi -  \frac{\pi}{6} } \\

 \implies \: z= 2  \bigg[    \cos \bigg \{ -  (1005)\pi -  \frac{\pi}{6}   \bigg \} + i  \sin \bigg \{ -  (1005)\pi -  \frac{\pi}{6}   \bigg \} \bigg ]  \\

 \implies \: z= 2  \bigg[    \cos \bigg \{  (1005)\pi  +  \frac{\pi}{6}   \bigg \}  -  i  \sin \bigg \{  (1005)\pi  +  \frac{\pi}{6}   \bigg \} \bigg ]  \\

 \implies \: z= 2  \bigg[  -    \cos \bigg (\frac{\pi}{6}   \bigg)  +  i  \sin \bigg (  \frac{\pi}{6}   \bigg ) \bigg ]  \\

 \implies \: z= 2  \bigg[  - \frac{ \sqrt{3} }{2}     +  i .  \frac{1}{2}   \bigg ]  \\

 \implies \: z= 2  \bigg[  - \frac{ \sqrt{3} }{2}     +   \frac{i}{2}   \bigg ]  \\

 \implies \: z= 2  \bigg[   \frac{ -  \sqrt{3}    +  i}{2}   \bigg ]  \\

 \implies \: z= -  \sqrt{3}    +  i \\

Similar questions