Math, asked by Afreen4632, 1 year ago

Write the condition to be satisfied by q so that a rational number p/q has a terminating decimal expension

Answers

Answered by gratefuljarette
213

The condition is q should be in 2^{a} \times 5^{b} form.

Given:

p/q contains a terminating expansion in decimal.

To find:

The necessary condition to be satisfied by q.

Solution:

The necessary condition which is to be satisfied by q such that the rational number p/q contains a terminating expansion in decimal is:

The denominator, that is, q should be in the form of \left(2^{2} \times 5^{b}\right),

Where, a , b denotes some non-negative integer, that is, a, b are positive integers.

Answered by mysticd
94

Answer:

x=\frac{p}{q}\:be \:a\\rational\:number, \:such \:that\\the \: prime\: factorisation\\of\:q\:is\:of\:the\\form\:2^{n}\times 5^{m},\:where\:n\:and\:m\\are \: non-negative\: integers.\\Then \:x\:has\:a\: decimal\: expansion\\which\: terminates.

Step-by-step explanation:

Let,\:x=\frac{p}{q}\:be \:a\\rational\:number, \:such \:that\\the \: prime\: factorisation\\of\:q\:is\:of\:the\\form\:2^{n}\times 5^{m},\:where\:n\:and\:m\\are \: non-negative\: integers.\\Then \:x\:has\:a\: decimal\: expansion\\which\: terminates.

 Example:\\\frac{3}{20}

 Denominator (q)=20=2^{2}\times 5^{1}\:is \\of \:the\:form \:2^{n}\times 5^{m}

Therefore,

\frac{3}{20}=\frac{3\times 5}{2^{2}\times 5^{2}}\\=\frac{15}{100}\\=0.15\:(terminating\:decimal)

•••♪

Similar questions