Math, asked by ankitdahiya88138, 1 year ago

Write the conjugate of (3-i)²/2+i

Answers

Answered by harnoor92
6

Answer:

 \frac{ {3}^{2} +  {i}^{2} - 2(3)(i)  }{2 + i}  \\  \frac{9 + ( - 1) - 6i}{2 + i}  \\  \frac{8  - 6i}{2 + i}  \times  \frac{2 - i}{2 - i}   \\  \frac{8(2 - i) - 6i(2 - i)}{ {2}^{2} -  {i}^{2}  }  \\  \frac{16 - 8i - 12i  + 6 {i}^{2} }{4 - ( - 1)}  \\  \frac{16 - 20i - 6}{5}  \\  \frac{10 - 20i}{5}  \\  \frac{5(2 - 4i)}{5}  \\ 2 - 4i \\ 2(1 - 2i)

Answered by chetanverma167
5

Step-by-step explanation:

It is Given That ,

z =  \frac{ {(3 - i)}^{2} }{2 + i}

now By using Identity,

 {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

We Get,

 \frac{ ({3}^{2} +  {i}^{2}  - 2 \times 3 \times i )}{2 + i}

We Know that,

 {i}^{2}  =  - 1

putting value,

we get,

 \frac{9 - 1 - 6i}{2 + i}

z =  \frac{8 - 6i}{2 + i}

Now , Rationalize it,

 \frac{8 - 6i}{2 + i}  \times  \frac{2 - i}{2 - i}

z =  \frac{(8 - 6i)(2 - i)}{(2 + i)(2 - i)}

z =  \frac{16 - 8i - 12i + 6 {i}^{2} }{ {2}^{2}  -  {i}^{2} }

Again Filling The Value of

 {i}^{2}  =  - 1

We get,

z =  \frac{16 -20i - 6}{4 - ( - 1)}

z =  \frac{10 - 20i}{4 + 1}

z =  \frac{10 - 20i}{5}

Split Both Imaginary and Real Roots,

z =  \frac{10}{5}  -  \frac{20i}{5}

z = 2 - 4i

Now We Have To Find the Conjugate ,

Conjugate Means To Simply Change the Signs of imaginary Root,

Conjugate is equal To ,

     \frac{}{z}  = 2 + 4i

Hope it Helpsss You....

Similar questions