write the derivative of sim x with respect to x
Answers
Answered by
1
We use the chain rule:
[math]\displaystyle \frac{\mathrm d(\sin x)}{\mathrm d(\cos x)} = \frac{\mathrm d(\sin x)}{\mathrm dx} \cdot \frac{\mathrm dx} {\mathrm d(\cos x)}[/math]
We know the derivatives of [math]\sin[/math] and [math]\cos[/math]:
[math]\displaystyle \frac{\mathrm d(\sin x)}{\mathrm dx} = \cos x[/math]
and
[math]\displaystyle \frac{\mathrm d(\cos x)}{\mathrm dx} = -\sin x[/math]
Also by the chain rule, we have:
[math]\displaystyle \frac{\mathrm dx} {\mathrm d(\cos x)} = -\frac 1 {\sin x}[/math]
So we have:
[math]\displaystyle \frac{\mathrm d(\sin x)}{\mathrm d(\cos x)} = -\frac{\cos x} {\sin x} = \boxed{-\cot x}[/math]
You can probably derive this geometrically with the unit circle but I’ll just leave you with this.
Answered by
0
Answer:
Step-by-step explanation:
hiii mate..
here is ur answer..
d(sinx)d(cosx)=d(sinx)dx⋅dxd(cosx)
We know the derivatives of sin and cos:
d(sinx)dx=cosx
and
d(cosx)dx=−sinx
Also by the chain rule, we have:
dxd(cosx)=−1sinx
So we have:
d(sinx)d(cosx)=−cosxsinx=−cotx
Similar questions