Math, asked by mpmahor, 3 months ago

Write the domain and the range of the function!!

\sf f(x) = \displaystyle \sqrt{x - |x| }

Answers

Answered by shadowsabers03
99

We're asked to find the domain and range of the function,

\longrightarrow f(x)=\sqrt{x-|x|}

In other way,

\longrightarrow f(x)=\left\{\begin{array}{lr}\sqrt{2x},&x\leq0\\0,&x\geq0\end{array}\right.

Consider,

\longrightarrow f(x)=\sqrt{2x},\quad\!\!x\in(-\infty,\ 0]

But, since \sqrt x is defined only for x\in[0,\ \infty),\ \sqrt{2x} is only defined for,

\longrightarrow 2x\in[0,\ \infty)

\longrightarrow x\in[0,\ \infty)

Then, f(x)=\sqrt{2x} only for,

\longrightarrow x\in(-\infty,\ 0]\cap[0,\ \infty)

\longrightarrow x\in\{0\}\quad\quad\dots(1)

And so,

\longrightarrow f(0)=\sqrt{2\cdot0}

\longrightarrow f(0)=0

\Longrightarrow f(x)\in\{0\}\quad\quad\dots(2)

Consider,

\longrightarrow f(x)=0,\quad\!\!x\in[0,\ \infty)

Here the function behaves like a constant function and there's no restriction, for every,

\longrightarrow x\in[0,\ \infty)\quad\quad\dots(3)

The function has the value 0 only here, i.e.,

\longrightarrow f(x)\in\{0\}\quad\quad\dots(4)

Now taking (1) ∨ (3),

\longrightarrow x\in\{0\}\cup[0,\ \infty)

\longrightarrow\underline{\underline{x\in[0,\ \infty)}}

This is the domain of the function.

And taking (2) ∨ (4),

\longrightarrow f(x)\in\{0\}\cup\{0\}

\longrightarrow\underline{\underline{f(x)\in\{0\}}}

This is the range of the function.

Similar questions