Write the first five terms of each of the following sequences whose nth terms are:
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
Answers
Answer with Step-by-step explanation:
(a) Given : an = 3n + 2
On putting n = 1
a1 = 3(1) + 2
a1 = 3 + 2
a1 = 5
On putting n = 2
a2 = 3(2) + 2
a2 = 6 + 2
a2 = 8
On putting n = 3
a3 = 3(3) + 2
a3 = 9 + 2
a3 = 11
On putting n = 4
a4 = 3(4) +2
a4 = 12+ 2
a4 = 14
On putting n = 5
a5 = 3(5) + 2
a5 = 15 + 2
a5 = 17
Hence, the first five terms of the following sequence are 5, 8, 11, 14, 17
(b) Given : an = (n - 2)/3
On putting n = 1
a1= (1 - 2)/3
a1 = - ⅓
On putting n = 2
a2 = (2 - 2)/3
a2 = 0
On putting n = 3
a3 = (3 - 2)/3
a3 = 1/3
On putting n = 4
a4 = (4 - 2)/3
a4 = 2/3
On putting n = 5
a5 = (5 - 2)/3
a5 = 3/3
a5 = 1
Hence, the first five terms of the following sequence are -⅓ , 0, 1/3, 2/3, 1
(c) Given : an = 3ⁿ
On putting n = 1
a1= 3¹
a1 = 3
On putting n = 2
a2 = 3²
a2 = 9
On putting n = 3
a3= 3³
a3 = 27
On putting n = 4
a4 = 3⁴
a4 = 81
On putting n = 5
a5 = 3⁵
a5 = 243
Hence, the first five terms of the following sequence are 3, 9, 27, 81, 243
(d) an = (3n - 2)/5
On putting n = 1
a1= (3×1 - 2)/5
a1 = (3 -2)/5
a1 = 1/5
On putting n = 2
a2 = (3×2 - 2)/5
a2 = (6 - 2)/5
a2 = 4/5
On putting n = 3
a3 = (3×3 - 2)/5
a3 = (9 - 2)/5
a3 = 7/5
On putting n = 4
a4 = (3×4 - 2)/5
a4 = (12 -2)/5
a4 = 10/5
a4 = 2
On putting n = 5
a5 = (3×5 - 2)/5
a5 = (15 -2)/5
a5 = 13/5
Hence, the first five terms of the following sequence are ⅕, ⅘, 7/5, 2 , 13/5
(e) Given : an = (-1)ⁿ . 2ⁿ
On putting n = 1
a1= (-1)¹. 2¹
a1= (-1). 2
a1 = - 2
On putting n = 2
a2 = (-1)². 2²
a2 = (1). 4
a2 = 4
On putting n = 3
a3 = (-1)³ .2³
a3 = (-1). 8
a3 = - 8
On putting n= 4
a4 = (-1)⁴.2⁴
a4 = (1).16
a4 = 16
On putting n = 5
a5= (-1)⁵ .2⁵
a5 = (-1).32
a5 = - 32
Hence, the first five terms of the following sequence are -2, 4, -8, 16, -32
(f) Given : an = n(n - 2)/2
On putting n = 1
a1= 1(1 - 2)/2
a1 = (1 × -1)/2
a1 = - ½
On putting n = 2
a2 = 2(2 - 2)/2
a2 = 2(0)/2
a2 = 0
On putting n = 3
a3 = 3(3 - 2)/2
a3 = 3 (1)/2
a3 = 3/2
On putting n = 4
a4 = 4(4 - 2)/2
a4 = 4(2)/2 = 8/2
a4 = 4
On putting n = 5
a5 = 5(5 - 2)/2
a5 = 5(3)/2
a5 = 15/2
Hence, the first five terms of the following sequence are - ½ , 0, 3/2 ,4, 15/2
(g) Given : an = n² - n + 1
On putting n= 1
a1= (1)² – 1 + 1
a1 = 1 + 0
a1 = 1
On putting n = 2
a2 = (2)² - 2+1
a2 = 4 - 1
a2 = 3
On putting n= 3
a = (3)² - 3 + 1
a3 = 9 - 2
a3 = 7
On putting n= 4
a4 = (4)² - 4 + 1
a4 = 16 - 3
a4 = 13
On putting n = 5
a5 = (5)² – 5 + 1
a5 = 25 - 4
a5 = 21
Hence, the first five terms of the following sequence are 1, 3, 7, 13, 21.
(h) Given : an = 2n² - 3n + 1
On putting n = 1
a1= 2(1)²– 3(1) + 1
a1 = 2 - 3 + 1
a1 = 0
On putting n = 2
a2= 2(2)² – 3(2) + 1
a2 = 8 - 6 + 1
a2 = 3
On putting n = 3
a3 = 2(3)² – 3(3) + 1
a3 = 18 - 9 + 1
a3 = 10
On putting n = 4
a4 = 2(4)² – 3(4) + 1
a4 = 32 -12 + 1
a4 = 20 + 1
a4 = 21
On putting n= 5
a5 = 2(5)² – 3(5) + 1
a5 = 50 - 15 + 1
a5 = 36
Hence, the first five terms of the following sequence are 0,3,10,21,36.
(i) Given : an = (2n - 3)/6
On putting n = 1
a1= (2 × 1 - 3)/6
a1= (2 - 3)/6
a1 = - ⅙
On putting n = 2
a2 = (2 × 2 - 3)/6
a2 = (4 - 3)/6
a2 = ⅙
On putting n = 3
a3 = (2 × 3 - 3)/6
a3 = (6 - 3)/6
a3 = 3/6
a3 = 1/2
On putting n = 4
a4 = (2 × 4 - 3)/6
a4 = (8 - 3)/6
a4 = 5/6
On putting n = 5
a5 = (2 × 5 - 3)/6
a5 = (10 - 3)/6
a5 = 7/6
Hence, the first five terms of the following sequence are -⅙,⅙, ½, ⅚, 7/6.