Math, asked by Anonymous, 8 months ago

Write the first four terms of the AP when the first term a and common difference d are (i) a = 10, d = 10 (ii) a = -2 , d = 0

Answers

Answered by Anonymous
25

Answer:

So here A.P full for is Arithmetic Progression

(i) a = 10 , d = 10

so here a that  is first term means 10

and d is the difference that is 10

now, we have to  make equation that is

a = 10

a1 = 10+10 = 20

a1 = 20

a2= 20+10 = 30

a2=30

a3=20+10

a3=30

a4=30+10

a4=40

so here your next three terms are 10,20,30,40

(ii) so here a that  is first term means -2

  and d is the difference that is 0

  a = -2

a1 = -2 + 0

a1 = -2

a2 = -2 +0

a2 = -2

a3 = -2 +0

a3 = -2

a4= -2 +0

a4 = -2

so here your next terms are -2,-2,-2,-2

there is no  decreasing or increasing order because the differnce is 0

Answered by sourya1794
49

(i) Given :-

  • First term (a) = 10

  • Common difference (d) = 10

To find :-

  • The first four terms of the AP

Solution :-

we know that,

\blue{\bigstar}\:\:{\underline{\boxed{\bf\red{a_1=a+0d}}}}

\rm\longrightarrow\:a_1=10+0\times\:d

\rm\longrightarrow\:a_1=10+0

\rm\longrightarrow\:a_1=10

\green{\bigstar}\:\:{\underline{\boxed{\bf\pink{a_2=a+d}}}}

\rm\longrightarrow\:a_2=10+10

\rm\longrightarrow\:a_2=20

\blue{\bigstar}\:\:{\underline{\boxed{\bf\purple{a_3=a+2d}}}}

\rm\longrightarrow\:a_3=10+2\times\:10

\rm\longrightarrow\:a_3=10+20

\rm\longrightarrow\:a_3=30

\pink{\bigstar}\:\:{\underline{\boxed{\bf\orange{a_4=a+3d}}}}

\rm\longrightarrow\:a_4=10+3\times\:10

\rm\longrightarrow\:a_4=10+30

\rm\longrightarrow\:a_4=40

Hence,the first four terms of the AP will be 10,20,30,40.

(ii) Given :-

  • first term (a) = -2

  • Common difference (d) = 0

To find :-

  • The first four terms of the AP

Solution :-

we know that,

\purple{\bigstar}\:\:{\underline{\boxed{\bf\pink{a_1=a+0d}}}}

\rm\longrightarrow\:a_1=-2+0\times\:0

\rm\longrightarrow\:a_1=-2

\orange{\bigstar}\:\:{\underline{\boxed{\bf\green{a_2=a+d}}}}

\rm\longrightarrow\:a_2=-2+0

\rm\longrightarrow\:a_2=-2

\red{\bigstar}\:\:{\underline{\boxed{\bf\orange{a_3=a+2d}}}}

\rm\longrightarrow\:a_3=-2+2\times\:0

\rm\longrightarrow\:a_3=-2

\orange{\bigstar}\:\:{\underline{\boxed{\bf\blue{a_4=a+3d}}}}

\rm\longrightarrow\:a_4=-2+3\times\:0

\rm\longrightarrow\:a_4=-2

Hence,the first four terms of the AP will be -2,-2,-2,-2.

Similar questions