Math, asked by sampathkumarjannu, 4 months ago

Write the given expression, as a product of linear factors with integer coefficients 24p² -41p + 12​

Answers

Answered by subhsamavartj
2

Answer:

=44p^4 - 220p^3 - 1056p^2 ÷ 11p^2 - 88p

=-176p - 1056p^2 - 96p^2(1056 got divided by 11) - 88 p

= - 264p-1056p^2-96p^2

= - 1152p^2 -264p

= - 1416p

Step-by-step explanation:

Answered by GoldenShades
3

Aɴsᴡᴇʀ:-

24p² - 41p + 12

Coєffícíєnt of p² = 24

Coєffícíєnt of p = - 41

Lєts fínd p(0) and p(1)

p(0) = 24 (0)² - 41 (0) + 12

= 0 - 0 + 12

= 12

p(1) = 24 (1)² - 41 (1) + 12

= 24 - 41 + 12

= - 5

So , p(0) αnd p(1) αre not factors of the polynomial 24p² - 41p + 12

So , lєts fínd p(2) and p(3)

p(2) = 24(2)² - 41(2) + 12

= 96 - 82 + 12

= 26

p(3) = 24(3)² - 41(3) + 12

= 216 - 123 + 12

= 105

Thus , thє polynomíals factor is above p(4)

Hᴏᴘᴇ Tʜɪs Hᴇʟᴘs Yᴏᴜ

Similar questions