Write the given expression, as a product of linear factors with integer coefficients 24p² -41p + 12
Answers
Answered by
2
Answer:
=44p^4 - 220p^3 - 1056p^2 ÷ 11p^2 - 88p
=-176p - 1056p^2 - 96p^2(1056 got divided by 11) - 88 p
= - 264p-1056p^2-96p^2
= - 1152p^2 -264p
= - 1416p
Step-by-step explanation:
Answered by
3
Aɴsᴡᴇʀ:-
24p² - 41p + 12
Coєffícíєnt of p² = 24
Coєffícíєnt of p = - 41
Lєts fínd p(0) and p(1)
p(0) = 24 (0)² - 41 (0) + 12
= 0 - 0 + 12
= 12
p(1) = 24 (1)² - 41 (1) + 12
= 24 - 41 + 12
= - 5
So , p(0) αnd p(1) αre not factors of the polynomial 24p² - 41p + 12
So , lєts fínd p(2) and p(3)
p(2) = 24(2)² - 41(2) + 12
= 96 - 82 + 12
= 26
p(3) = 24(3)² - 41(3) + 12
= 216 - 123 + 12
= 105
Thus , thє polynomíals factor is above p(4)
Hᴏᴘᴇ Tʜɪs Hᴇʟᴘs Yᴏᴜ
Similar questions