Math, asked by Anonymous, 19 days ago

Write the meaning of a° & a⁻ᵐ
Ans also the laws of indices; no spam

Answers

Answered by ᏞovingHeart
165

\Large{\underbrace{\sf{\red{Required \; Solution:}}}}

Write the meaning of a°

Answer:

  • a° = 1

Explanation:

If a ≠ 0

\sf{Then,  \; \dfrac{a^m}{a^m}=1}

   

\sf{Also, \; \dfrac{ a^m }{ a^m } = a^{m-m} = a^\circ}

     

\therefore \; \boxed{\sf{\orange{a^\circ = 1}}}

   

Write the meaning of a⁻ᵐ

Answer:

  • aᵐ = ¹/ₐᵐ

Explanation:

\implies \sf{a^{-m} = a^{-m} \times 1}

   

\implies \sf{ a^{-m} \times \cfrac{ a^m }{ a^m } }

   

\implies \sf{ \cfrac{ a^{ -m+m }}{ a^m } }

   

\implies \sf{ \cfrac{ a^0 }{ a^m } = \cfrac{ 1 }{ a^m } }

   

\therefore \; \boxed{\sf{\orange{a^{-m} = \dfrac{ 1 }{ a^m }}}}

     

⋆ Laws of Indices;

Remember: If a is a non-zero and m and n are integers, then

  • Law 1 - \sf{a^m \times a^n = a^{m+n}}
  • Law 2 - \sf{ a^m \div a^n = a^{m-n} }
  • Law 3 - \sf{a^1 = a}
  • Law 4 - \sf{a^0 = 1}
  • Law 5 - \sf{a^{-m} = \dfrac{ 1 }{ a^m }  }
  • Law 6 - \sf{ (ab)^m = a^m \times b^m }
  • Law 7 - \sf{ \bigg( \dfrac{a}{b} \bigg)^m = \dfrac{a^m}{b^m} }
  • Law 8 - \sf{(a^m)^n = a^{mn}}
  • Law 9 - \sf{ \bigg( \dfrac{a}{b} \bigg)^{-m} = \bigg( \dfrac{b}{a} \bigg)^m }

_____________________________

Answered by Anonymous
11

Answer:

  1. a° = 1
  2. a⁻ᵐ = 1/aᵐ

Step-by-step explanation:

1. Solution;

If a ≠ 0

Then aᵐ/aᵐ = aᵐ⁻ⁿ = a°

a° = 1

_

1. Solution;

a⁻ᵐ = 1

= a⁻ᵐ ×  aᵐ/aᵐ

=  a⁻ᵐ⁺ⁿ/aᵐ

= a⁰/aᵐ = 1/aᵐ

a⁻ᵐ = 1/aᵐ

___

✦ 「Law of exponents」

-› \sf{a^m \times a^n = a^{m+n}}

-› \sf{ a^m \div a^n = a^{m-n} }

-› \sf{a^1 = a}

-› \sf{a^0 = 1}

-› \sf{a^{-m} = \dfrac{ 1 }{ a^m }  }

-› \sf{ (ab)^m = a^m \times b^m }

-› \sf{ \bigg( \dfrac{a}{b} \bigg)^m = \dfrac{a^m}{b^m} }

-› \sf{(a^m)^n = a^{mn}}

-› \sf{ \bigg( \dfrac{a}{b} \bigg)^{-m} = \bigg( \dfrac{b}{a} \bigg)^m }

________

Similar questions