Math, asked by sirinaiduy7165, 9 months ago

Write the median class of the following distribution:
class interval: 0-10 10-20 20-30 30-40 40-50 50-60 60-70
Frequency: 4 4 8 10 12 8 4

Answers

Answered by mohitjnit
2

Step-by-step explanation:

The median class in the following frequency distribution is:

Class Interval:0-1010-2020-3030-4040-50Frequency1213252010

Answered by Anonymous
19

\underbrace{\overbrace{\begin{tabular}{|c|c|}\cline{1-2}Class &  Frequency  \\\cline{1-2} 0 - 10 & 4  \\ 10 - 20 & 4  \\ 20 - 30 & 8  \\30 - 40 & 10  \\ 40 -50 & 12  \\50 - 60 & 8  \\ 60 -70 & 4 \\\cline{1-2}\end{tabular}}}}

⠀⠀⠀⠀⠀⠀⠀

☯ We have to find, Median class of given distribution.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\boxed{\begin{array}{cccc}\bf Class\: interval&\bf Frequency\: (f)& \bf C.F\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf 0 - 10&\sf 4&\sf 4\\\\\sf 10 - 20 &\sf 4&\sf 8\\\\\sf 20- 30 &\sf 8&\sf 16\\\\\sf 30 - 40&\sf 10&\sf 26\\\\\sf 40- 50&\sf 12&\sf 38\\\\\sf 50 - 60&\sf 8&\sf 46\\\\\sf 60- 70&\sf 4&\sf 50\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\bf & \bf \sum f = 50& \end{array}}

⠀⠀⠀⠀⠀⠀⠀

Now,

⠀⠀⠀⠀⠀⠀⠀

\sf \dfrac{n}{2}, (where "n" = \sf \sum F) = \sf \dfrac{50}{2} = \bf{25}.

⠀⠀⠀⠀⠀⠀⠀

So, The value of comulative frequency just greater than or equal to 25 is 26 and the corresponding class is 30 - 40 . Therefore 30 - 40 is the median class.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions