Math, asked by danish6859, 1 year ago

Write the next four terms of an A.P. whose first term is 11 and the common difference 2.​

Answers

Answered by bibhavbibhor2
19

Answer:

11,13,15,17

Step-by-step explanation:

reffer to picture for detailed solution

Attachments:
Answered by Shreya091
71

\huge{\sf{\underline{\underline{AnSwEr:-}}}}

\large{\sf{\underline{\underline{SoluTion:-}}}}

\large\sf\therefore\green{NexT \: Terms\: =13,15,17,19}

\large{\sf{\underline{\underline{Given:-}}}}

\bullet \rm\ First \: Term(a_1) = 11

\bullet \rm\ Common  \: difference(d) =2

\large{\sf{\underline{\underline{To \: FinD :-}}}}

\bullet \rm\ Next \: FouR \: terms

\large{\sf{\underline{\underline{STep \: bY \: STep \: expLanaTion :-}}}}

\large\sf\therefore\purple{Method \: 1: }

We know that general form of AP is ;

\large\red{\boxed{\sf A.P = a,a+d,a+2d,a+3d...}}

Now,

_________________

Four next terms after the first will be ;

\large\sf\to\ a+d,a+2d,a+3d,a+4d  \\ \\ \large\sf\to\ (11+2), (11+2 \times\ 2), (11+3 \times\ 2) , (11+4 \times\ 2 )\\ \\ \large\sf\to\ 13,15,17,19

____________________

\large\sf\therefore\purple{Method \: 2:}

Formula used here ;

\large\red{\boxed{\sf a_n= a+(n-1)d }}

Now,

We have to find four terms after the first term\sf\ (a_1) So ,the next terms will be \sf\ a_2,a_3,a_4,a_5 ....

\large\tt\ LeT's \:  begin !

_______________

\bullet \large\tt\ a_2 = 11+(2-1)2

\large\tt\to\ a_2=11+ (1)2

\large\tt\to\ a_2 =13

_____________

\bullet \large\tt\ a_3= 11+(3-1)2

\large\tt\to\ a_3= 11+(2)2

\large\tt\to\ a_3=15

____________

\bullet \large\tt\ a_4 =11+(4-1)2

\large\tt\to\ a_4= 11+(3)2

\large\tt\to\ a_4 =17

_____________

\bullet \large\tt\ a_5= 11+(5-1)2

\large\tt\to\ a_5= 11+(4)2

\large\tt\to\ a_5= 19

°Now, The AP is ;

\large\sf\to\ 11,13,15,17,19....

°Next four terms after first term are ;

\large\sf\to\ 13,15,17,19

Similar questions