Math, asked by sushantsinghthakur31, 5 months ago

. Write the nth tern if the sum of n terms of an AP is 2n?​

Answers

Answered by sumitkaushik291
3

Step-by-step explanation:

⇒S

⇒S 1

⇒S 1

⇒S 1 =2(1)+3(1)

⇒S 1 =2(1)+3(1) 2

⇒S 1 =2(1)+3(1) 2 =5

⇒S 1 =2(1)+3(1) 2 =5S

⇒S 1 =2(1)+3(1) 2 =5S n

⇒S 1 =2(1)+3(1) 2 =5S n

⇒S 1 =2(1)+3(1) 2 =5S n =

⇒S 1 =2(1)+3(1) 2 =5S n = 2

⇒S 1 =2(1)+3(1) 2 =5S n = 2n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n =

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n =

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 =

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n {5+a

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n {5+a n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n {5+a n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n {5+a n }

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n {5+a n }4+6n=5+a

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n {5+a n }4+6n=5+a n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n {5+a n }4+6n=5+a n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n {5+a n }4+6n=5+a n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n {5+a n }4+6n=5+a n ⇒a

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n {5+a n }4+6n=5+a n ⇒a n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n {5+a n }4+6n=5+a n ⇒a n

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n {5+a n }4+6n=5+a n ⇒a n =6n−1

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n {5+a n }4+6n=5+a n ⇒a n =6n−1⇒a

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n {5+a n }4+6n=5+a n ⇒a n =6n−1⇒a r

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n {5+a n }4+6n=5+a n ⇒a n =6n−1⇒a r

⇒S 1 =2(1)+3(1) 2 =5S n = 2n {2a+(n−1)d}S n = 2n {a+a+(n−1)d}S n = 2n {a+a n }2n+3n 2 = 2n {5+a n }4+6n=5+a n ⇒a n =6n−1⇒a r =6r−1

hope it's useful for you dear

Similar questions