write the polynomial the product and sum of whose zeroes are -9/2and -3/2 respectively
Answers
Answered by
486
Sum of zeroes = -9/2
Product of zeroes = -3/2
The required polynomial is :-
» k [x² - (sum of zeroes)x + (product of zeroes)]
» k [x² - (-9/2)x + (-3/2)]
» k [x²+9x/2 - 3/2]
put k=2 to remove the fraction
» 2(x²+9x/2 - 3/2)
» 2x²+9x-3 is required polynomial
Product of zeroes = -3/2
The required polynomial is :-
» k [x² - (sum of zeroes)x + (product of zeroes)]
» k [x² - (-9/2)x + (-3/2)]
» k [x²+9x/2 - 3/2]
put k=2 to remove the fraction
» 2(x²+9x/2 - 3/2)
» 2x²+9x-3 is required polynomial
Answered by
93
sum of zeros = -9/2
product of zeros = -3/2
the required polynomial is
k [ x2 - ( sum of zeros) x + ( product of zeros) ]
k [ x2 - ( -9/2) x (-3/2) ]
k [ x2 - 9x / 2 - 3/2 ]
put k = 2 to remove the fraction
2 [ x2 + 9x/2 - 3/2 ]
2x2 + 9x - 3
it is required polynomial
Similar questions