Math, asked by sakshi154, 1 year ago

write the polynomial whose zeroes are 2+√3 and 2-√3

Answers

Answered by phillipinestest
313

The polynomial whose zeroes are  \bold{2+\sqrt{3}}  and  \bold{2-\sqrt{3}} is  \bold{x^{2}-4 x+1}

Solution:  

Since there are 2 zeroes, the polynomial is of degree 2.

Let a  and b represents the zeroes of the polynomial.

Let a=2+\sqrt{3} and b=2-\sqrt{3}

Since, the polynomial is of degree 2

Polynomial would be of the form  \bold{x^{2}-(a+b) x+a b}  

Therefore computing the values,

 \bold{a+b=(2+\sqrt{3})+(2-\sqrt{3})=4}

 \bold{a b=(2+\sqrt{3}) \times(2-\sqrt{3})=4-3=1}

Therefore, the polynomial is  \bold{x^{2}-4 x+1}  

Answered by mysticd
120

Answer:

Required quadratic polynomial -4x+1.

Step-by-step explanation:

Let\:the \: quadratic \: polynomial\\be\:ax^{2}+bx+c,\\a≠0\:and\:its\: zeroes\:be\\</p><p>\alpha, \:\beta.

Here,\:\alpha = 2+\sqrt{3},\\\beta = 2-\sqrt{3}

i) Sum\:of\:the\: zeroes\\=\alpha+\beta \\= 2+\sqrt{3}+2-\sqrt{3}\\=4

ii) Product\:of\:the\:zeroes\\=\alpha\beta\\=(2+\sqrt{3})(2-\sqrt{3})\\=2^{2}-(\sqrt{3})^{2}\\=4-3\\=1

Therefore the Quadratic polynomial ax²+bx+c is

k[x^{2}-(\alpha+\beta)x+\alpha\beta],\\where\:k\:is\:a\\constant

=k[x^{2}-4x+1]

We can put different values of k.

When k = 1 , the quadratic polynomial will be -4x+1.

Similar questions