Write the relation between resistance and electrical resistivity of
the material of a conductor in the shape of a cylinder of length
and area of cross-section 'A'. Hence derive the S.I. unit of electrical
resistivity.
Resistance of a metal wire of length 5 m is 100 g. If the area of
cross-section of the wire is 3 x 10 m, calculate the resistivity of
the metal.
Answers
Answer SHOULD BE LIKE THIS]
hms Law states that when a voltage (V) source is applied between two points in a circuit, an electrical current (I) will flow between them encouraged by the presence of the potential difference between these two points. The amount of electrical current which flows is restricted by the amount of resistance (R) present. In other words, the voltage encourages the current to flow (the movement of charge), but it is resistance that discourages it.
We always measure electrical resistance in Ohms, where Ohms is denoted by the Greek letter Omega, Ω. So for example: 50Ω, 10kΩ or 4.7MΩ, etc. Conductors (e.g. wires and cables) generally have very low values of resistance (less than 0.1Ω) and thus we can neglect them as we assume in circuit analysis calculations that wires have zero resistance. Insulators (e.g. plastic or air) on the other hand generally have very high values of resistance (greater than 50MΩ), therefore we can ignore them also for circuit analysis as their value is too high.
But the electrical resistance between two points can depend on many factors such as the conductors length, its cross-sectional area, the temperature, as well as the actual material from which it is made. For example, let’s assume we have a piece of wire (a conductor) that has a length L, a cross-sectional area A and a resistance R as shown.
Answer:
ohms Law states that when a voltage (V) source is applied between two points in a circuit, an electrical current (I) will flow between them encouraged by the presence of the potential difference between these two points. The amount of electrical current which flows is restricted by the amount of resistance (R) present. In other words, the voltage encourages the current to flow (the movement of charge), but it is resistance that discourages it.
We always measure electrical resistance in Ohms, where Ohms is denoted by the Greek letter Omega, Ω. So for example: 50Ω, 10kΩ or 4.7MΩ, etc. Conductors (e.g. wires and cables) generally have very low values of resistance (less than 0.1Ω) and thus we can neglect them as we assume in circuit analysis calculations that wires have zero resistance. Insulators (e.g. plastic or air) on the other hand generally have very high values of resistance (greater than 50MΩ), therefore we can ignore them also for circuit analysis as their value is too high.
But the electrical resistance between two points can depend on many factors such as the conductors length, its cross-sectional area, the temperature, as well as the actual material from which it is made. For example, let’s assume we have a piece of wire (a conductor) that has a length L, a cross-sectional area A and a resistance R as shown.
mark me brain list