Math, asked by appuanu9582, 1 year ago

Write the set of values of x for which 2tan inverse x= tan inverse 2x/1-x^2

Answers

Answered by guptasingh4564
34

2tan^{-1}x=tan^{-1}\frac{2x}{1-x^{2} } when -1< x< 1

Step-by-step explanation:

Given;

2tan^{-1}x=tan^{-1}\frac{2x}{1-x^{2} }__equation-1

Let, x=tanA  Where A=tan^{-1}x

Now,

\frac{2x}{1-x^{2} } =\frac{2tanA}{1-tan^{2} A}

\frac{2x}{1-x^{2} } =tan2A

take tan^{-1} on both sides;

tan^{-1} \frac{2x}{1-x^{2} } =tan^{-1}tan2A

We know,

tan^{-1} (tan\theta) =\theta when -\frac{\pi}{2}< \theta <  \frac{\pi}{2}

tan^{-1} (tan2A) =2A

When,

-\frac{\pi}{2}< 2A <  \frac{\pi}{2}

-\frac{\pi}{4}< A <  \frac{\pi}{4}

-\frac{\pi}{4}< tan^{-1} x <  \frac{\pi}{4}

tan^{-1} (-\frac{\pi}{4})<x <  tan^{-1} (\frac{\pi}{4})

-1< x< 1

Hence 2tan^{-1}x=tan^{-1}\frac{2x}{1-x^{2} } when -1< x< 1

Similar questions