Math, asked by mishtybabu4222, 1 month ago

write the standard form.of equation using factorization method,solve the following quadratic equation x-1/x-2+x-3/x-4=3 1/3;x is not equal to2,4​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{x - 1}{x - 2}  + \dfrac{x - 3}{x - 4}  = 3\dfrac{1}{3}

\rm :\longmapsto\:\dfrac{(x - 1)(x - 4) + (x - 3)(x - 2)}{(x - 2)(x - 4)}  = \dfrac{10}{3}

\rm :\longmapsto\:\dfrac{{x}^{2} - x - 4x + 4 +  {x}^{2} - 3x - 2x + 6  }{ {x}^{2} - 2x - 4x + 8 }  = \dfrac{10}{3}

\rm :\longmapsto\:\dfrac{ {2x}^{2} - 10x + 10 }{ {x}^{2}  - 6x + 8}  = \dfrac{10}{3}

\rm :\longmapsto\: {10x}^{2} - 60x + 80 =  {6x}^{2} - 30x + 30

\rm :\longmapsto\: {4x}^{2} - 30x + 50 = 0

\rm :\longmapsto\: {2x}^{2} - 15x + 25 = 0

\rm :\longmapsto\: {2x}^{2} - 10x - 5x + 25 = 0

\rm :\longmapsto\:2x(x - 5) - 5(x - 5) = 0

\rm :\longmapsto\:(x - 5)(2x - 5) = 0

\bf\implies \:x = 5 \:  \:  \: or \:  \:  \: x = \dfrac{5}{2}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac
Similar questions