Math, asked by sabyasachipanda3435, 6 months ago

Write the standard form of the equation of a circle with the given characteristics. Center: (– 8, – 3); Radius: 2√3

Answers

Answered by Asterinn
3

Given :

  • Center: (– 8, – 3)

  • Radius: 2√3

To find :

  • equation of a circle

Formula used :

If center (x1 , x2) and radius (r) of circle is given then equation of circle :-

 \bf {(x - x_1)}^{2}  +  {(y - y_1)}^{2}  =  {r}^{2}

Solution :

Center of circle = (– 8, – 3)

Radius = 2√3

\sf  \implies{(x - x_1)}^{2}  +  {(y - y_1)}^{2}  =  {r}^{2}

\sf  \implies{(x  + 8)}^{2}  +  {(y + 3)}^{2}  =  {(2 \sqrt{3}) }^{2}

We know that :-

 \boxed{\sf  {(a + b)}^{2}   =  {a}^{2}  +  {b}^{2}  + 2ab}

\sf  \implies {x}^{2} + 64 + 16x   +  {y}^{2}  + 9 + 6y =  12

\sf  \implies {x}^{2} + 16x   +  {y}^{2}  + 6y + 73 =  12

\sf  \implies {x}^{2} + 16x   +  {y}^{2}  + 6y + 73  -   12 = 0

\sf  \implies {x}^{2}    +  {y}^{2} + 16x + 6y + 6  1= 0

Answer :

 \sf equation  \: of \:  a \:  circle : {x}^{2}    +  {y}^{2} + 16x + 6y + 6  1= 0

Similar questions