Math, asked by lucky078682, 8 months ago

write the statement of phthagorous therom and prove it​

Answers

Answered by prince5132
31

TO PROVE :-

  • The Pythagoras theorem (AC² = AB² + BC²)

CONSTRUCTION :-

  • Draw BD ⟂ AC.

PROOF :-

Pythagoras theorem :- the Pythagoras theorem states that in every right angled ∆ the square of hypotenuse is is equal to the sum of square of perpendicular and base.

In ABD and ABC,

  \\ : \implies \displaystyle \sf \angle A = \angle A \ \ \ \ \ \ \  \ \ \ \bigg \lgroup \displaystyle \sf Common \bigg \rgroup \\  \\

 \\ : \implies \displaystyle \sf \angle D = \angle B \ \ \ \ \ \ \  \ \ \ \bigg \lgroup \displaystyle \sf Perpendiculars \bigg \rgroup \\  \\

\therefore \underline {\displaystyle \sf By \ AA  \:  Similarity  \: \triangle ABD \:   \sim\triangle ABC.} \\  \\

As we know the theorem :- sides of similar triangle are in the same ratio.

 \\ : \implies \displaystyle \sf AD\ratio \: AB= AB \ratio BC \\  \\

 \\ : \implies \displaystyle \sf \dfrac{AD}{AB} = \dfrac{AB}{AC} \\  \\  \\

: \implies \displaystyle \sf AD \times AC = AB \times AB \\  \\  \\

: \implies \displaystyle \sf AD \times AC = AB ^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg \lgroup  \displaystyle \sf Equation \ 1 \bigg \rgroup \\  \\

Now in ∆ BDC and ∆ABC,

 \\ : \implies \displaystyle \sf \angle C = \angle C \ \ \ \ \ \ \  \ \ \ \bigg \lgroup \displaystyle \sf Common \bigg \rgroup \\  \\

 \\ : \implies \displaystyle \sf \angle D = \angle B \ \ \ \ \ \ \  \ \ \ \bigg \lgroup \displaystyle \sf Perpendiculars \bigg \rgroup \\  \\

\therefore \underline {\displaystyle \sf By \ AA \ Similarity \ \triangle BDC \ \sim \triangle ABC.} \\  \\

As we know the theorem :- sides of similar triangle are in the same ratio.

 \\ : \implies \displaystyle \sf CD\ratio \ BC = BC \ratio AC \\  \\  \\

: \implies \displaystyle \sf \dfrac{ CD}  {BC} =  \dfrac{BC}{  AC}  \\  \\  \\

: \implies \displaystyle \sf AC \times CD = BC \times BC \\  \\  \\

: \implies \displaystyle \sf AC \times CD = BC^{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg \lgroup  \displaystyle \sf Equation \ 1 \bigg \rgroup \\  \\

_____________________

 \\ \dashrightarrow \bigg \lgroup  \displaystyle \sf Equation \ 1 \bigg \rgroup + \bigg \lgroup  \displaystyle \sf Equation \ 2 \bigg \rgroup \\  \\  \\

\dashrightarrow \displaystyle \sf AD \times AC + AC \times CD = AB^{2} + BC^{2} \\  \\  \\

\dashrightarrow \displaystyle \sf \:  AC( CD + AD) = AB^{2} + BC^{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg \lgroup  \displaystyle \sf Common \ AC \bigg \rgroup \\  \\  \\

\dashrightarrow \displaystyle \sf \:  AC ^{2}  = AB^{2} + BC^{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg \lgroup  \displaystyle \sf AC = AD + CD\bigg \rgroup \\  \\

HENCE PROVED.

Attachments:

Anonymous: Awesome ♥️
Answered by Anonymous
6

Answer:

Step-by-step explanation:

Pythagoras theorem states that “ In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides”.

The sides of the right-angled triangle are called base, perpendicular and hypotenuse . Proof: ... ∠BAD = ∠BAC i.e. ∠A is common in both triangles.

Similar questions