Math, asked by sarakhan6364, 9 months ago

Write the value of 1\√5-√3

Answers

Answered by ankushsaini23
2

Answer:

value \: of \:  \frac{1}{ \sqrt{5} -  \sqrt{3}  }

 \frac{1}{ \sqrt{5} -  \sqrt{3}  }  \times  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }  =  \frac{ \sqrt{5} +  \sqrt{3}  }{(  { \sqrt{5} }^{2} ) -  { (\sqrt{3} }^{2} ) }

√5+√3

-------------

5-3

√5+√3

= ------------ =ANSWER:-

2

Hope it helps you...

please mark it as a brainlist answer...

also please rate thanks and follow me...

stay home STAY SAFE....

Answered by mysticd
3

 Value \:of \: \frac{1}{(\sqrt{5} - \sqrt{3})}

 Multiplying\: numerator\: and\: denominator\\ by\: (\sqrt{5} + \sqrt{3}) ,\:we \:get

 =  \frac{(\sqrt{5}+\sqrt{3})}{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})}\\=\frac{(\sqrt{5}+\sqrt{3})}{(\sqrt{5})^{2} - (\sqrt{3})^{2}}

/* By Algebraic Identity */

 \boxed { \pink { (x + y)(x - y) = x^{2} - y^{2} }}

 = \frac{(\sqrt{5}+\sqrt{3})}{(5 - 3)}

 = \frac{(\sqrt{5}+\sqrt{3})}{2}

Therefore.,

 \red{Value \:of \: \frac{1}{(\sqrt{5} - \sqrt{3})}}\green {= \frac{(\sqrt{5}+\sqrt{3})}{2}}

•••♪

Similar questions