Math, asked by bavitayadav1985, 2 months ago

write the value of n in each of the following
plz solve this problem ​

Attachments:

Answers

Answered by XxMissInnocentxX
14

__________________________

Solution:-

 \frac{5 {}^{n}  \times 5 {}^{3}  \times 5 {}^{ - 2} }{ {5}^{ - 5} }  =  {5}^{12}  \\ \\   \\    \implies\frac{5 {}^{n + 3 - 2} }{ {5}^ { - 5} }  =  {5}^{12}  \\  \\ \\   \implies \frac{5 {}^{n + 1} }{ {5}^{ - 5} }  =  {5}^{12}  \\  \\  \\  \implies \:  {5}^{n + 1 - ( - 5)}  =  {5}^{12}  \\  \ \\ \  \implies \:  {5}^{n + 1 + 5}  =  {5}^{12}  \\  \\  \\  \implies {5}^{n + 6}  =  {5}^{12}  \\  \\  \\  \implies \:  n + 6 = 12 \\   \\ \\  \implies \: n = 12 - 6 \\  \ \\ \ \\    \implies \boxed  {  n = 6}

__________________________

Done! :D

Answered by Anushka786
20

1)  \huge \tt{\frac{{\color{blue}{5}^{n} \times  {5}^{3}  \times  {5}^{ - 2}}} {\color{blue}{ {5}^{ - 5} }}} =  {\color{lightgreen}{5}^{12}}

  \huge \Rightarrow  \frac{\tt{\color{blue} {5}^{n + 3 + ( - 2)} }}{\color{blue}{ {5}^{ - 5}}} =  {\tt{\color{lightgreen}{5}^{12}}}

 \huge \Rightarrow  \frac{\tt{\color{blue} {5}^{n + 1}  }}{ \tt{\color{blue} {5}^{ - 5} }} =  \tt{ \color{lightgreen} {5}^{12} }

  \large\Rightarrow\tt{\color{blue} {5}^{n + 1 - (  - 5)}} =  \tt{\color{lightgreen} {5}^{12} }

  \huge\Rightarrow \tt{\color{blue} {5}^{n + 1 + 5 } } =  \tt{\color{lightgreen} {5}^{12} }

  \huge\Rightarrow \tt{\color{blue} {5}^{n + 6} } =  \tt{\color{lightgreen} {5}^{12}  }

As we know that if exponents have same base so their exponents will also be same!!!

so,

 \:  \ \:  \:  \:  \:  \:  \:  \:   \Rightarrow \large\tt{\color{blue}n + 6} =  \tt{\color{lightgreen}12}

 \large \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \Rightarrow\tt{\color{blue}n} =  \tt{\color{lightgreen}12 - 6}

 \large \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \Rightarrow\boxed{\tt{\color{blue}n} =  \tt{\color{lightgreen}6}}

So n = 6

Similar questions