Write the whole Process without leaving any single point of Thermal Power Plant and Nuclear Power Plant
Plsss Answer the above Question
It is Really Urgent
Don't Spam or Report It..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
Thanku So much For 700 + Followers
I am so Happy For It..
Thanks Armies for ur All Support
Keep Smiling Armies
Saranghe Armies
Borahae ♡
Kulkir if u are Seeing this Question pls see there is one Question where no one has answered me
So, u can Answer me there as u wanted to tell me something..
Good Night Armies
Have Sweet Bangtan Dreams
Once again to Armies
Happy Jimin Day♡❤
Answers
Answer:
Hope it helps you mate
Explanation:
thermal power station is a power station in which heat energy is converted to electric power. In most, a steam-driven turbine converts heat to mechanical power as an intermediate to electrical power. Water is heated, turns into steam and drives a steam turbine which drives an electrical generator. After it passes through the turbine the steam is condensed in a condenser and recycled to where it was heated. This is known as a Rankine cycle. The greatest variation in the design of thermal power stations is due to the different heat sources: fossil fuel, nuclear energy, solar energy, biofuels, and waste incineration are all used. Certain thermal power stations are also designed to produce heat for industrial purposes, for district heating, or desalination of water, in addition to generating electrical power.
Answer:A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a generator that produces electricity. As of 2018, the International Atomic Energy Agency reported there were 450 nuclear power reactors in operation in 30 countries around the worldNuclear plants are usually considered to be base load stations since fuel is a small part of the cost of production and because they cannot be easily or quickly dispatched. Their operations, maintenance, and fuel costs are at the low end of the spectrum, making them suitable as base-load power suppliers. However, the cost of proper long term radioactive waste storage is uncertain.Nuclear reprocessing technology was developed to chemically separate and recover fissionable plutonium from irradiated nuclear fuel.Reprocessing serves multiple purposes, whose relative importance has changed over time. Originally reprocessing was used solely to extract plutonium for producing nuclear weapons. With the commercialization of nuclear power, the reprocessed plutonium was recycled back into MOX nuclear fuel for thermal reactors.The reprocessed uranium, which constitutes the bulk of the spent fuel material, can in principle also be re-used as fuel, but that is only economic when uranium prices are high or disposal is expensive. Finally, the breeder reactor can employ not only the recycled plutonium and uranium in spent fuel, but all the actinides, closing the nuclear fuel cycle and potentially multiplying the energy extracted from natural uranium by more than 60 times.Nuclear reprocessing technology was developed to chemically separate and recover fissionable plutonium from irradiated nuclear fuel.Reprocessing serves multiple purposes, whose relative importance has changed over time. Originally reprocessing was used solely to extract plutonium for producing nuclear weapons. With the commercialization of nuclear power, the reprocessed plutonium was recycled back into MOX nuclear fuel for thermal reactors.The reprocessed uranium, which constitutes the bulk of the spent fuel material, can in principle also be re-used as fuel, but that is only economic when uranium prices are high or disposal is expensive. Finally, the breeder reactor can employ not only the recycled plutonium and uranium in spent fuel, but all the actinides, closing the nuclear fuel cycle and potentially multiplying the energy extracted from natural uranium by more than 60 times.Nuclear reprocessing reduces the volume of high-level waste, but by itself does not reduce radioactivity or heat generation and therefore does not eliminate the need for a geological waste repository. Reprocessing has been politically controversial because of the potential to contribute to nuclear proliferation, the potential vulnerability to nuclear terrorism, the political challenges of repository siting (a problem that applies equally to direct disposal of spent fuel), and because of its high cost compared to the once-through fuel cycle. In the United States, the Obama administration stepped back from President Bush's plans for commercial-scale reprocessing and reverted to a program focused on reprocessing-related scientific research.
Explanation:I hope this will help you ✨