Math, asked by abhinaypandey2774, 1 year ago

write zeroes of x^2-x-6 and 4x^2+5√2x-3​

Answers

Answered by Anonymous
10

Step-by-step explanation:

 \huge \: 1) {x}^{2}  - x - 6 \\  \\  {x}^{2}  - x - 6 = 0 \\  \\  {x}^{2}  + 2x - 3x - 6 = 0 \\  \\ x(x + 2) - 3(x + 2) = 0 \\  \\ (x - 3)(x + 2) = 0 \\  \\ x - 3 = 0 \:  \:  \:  \: or \:  \:  \: x + 2 = 0 \\  \\ x = 3 \:  \:  \:  \: or \:  \:  \:  \: x =  - 2 \\  \\  \huge \: 2)4 {x}^{2}  + 5 \sqrt{2} x - 3 \\   \\ 4 {x}^{2}  + 5 \sqrt{2} x - 3 = 0 \\  \\ a = 4 \\ b = 5 \sqrt{2}  \\ c =  - 3 \\  \\  \delta =  \frac{ {b}^{2}  - 4ac}{2a}  \\  \\  \delta =  \frac{( {5 \sqrt{2}) }^{2} - 4(4)( - 3) } {2(4)}  \\  \\  \delta  =  \frac{50 + 48}{8}   \\  \\  \delta =  \frac{98}{8}  \\  \\  \delta =  \frac{49 \times 2}{4  \times 2}  =  \frac{49}{4}  \\  \\ x =  \frac{ - b \pm \sqrt{ \delta} }{2a}  \\  \\ x =  \frac{ - 5 \sqrt{2} \pm \sqrt{ \frac{49}{4} }  }{2(4)}  \\  \\ x =  \frac{ - 5 \sqrt{2} \pm \frac{7}{2}  }{8}  \\  \\ x =  \frac{ - 10 \sqrt{2} \pm7 }{8 \times 2}  =  \frac{ - 10 \sqrt{2} \pm7 }{16}  \\  \\ x =  -  \frac{10}{16}  \sqrt{2}  +  \frac{7}{16}  \:  \:  \:  \: or \:  \:  \: x =  -  \frac{10}{16}  \sqrt{2}  -  \frac{7}{16}

Answered by TheCommando
16

 \bold{{x}^{2} - x - 6}

To find the zeroes

p(x) = 0

 p(x) = {x}^{2} - x - 6 = 0 \\ \implies {x}^{2} +2x -3x - 6 = 0 \\ \implies x(x+2) -3(x+2) = 0 \\ \implies (x-3) (x+2) = 0 \\ \implies (x-3) = 0 \; ; (x+2) = 0

x - 3 = 0

x = 3

x + 2 = 0

x = -2

Zeroes of  p(x) = {x}^{2} - x - 6 are 3 and -2

\bold{4{x}^{2} + 5\sqrt{2}x - 3}

To find the zeroes

f(x) = 0

 f(x) = 4{x}^{2} + 5\sqrt{2}x - 3 = 0 \\ \implies 4{x}^{2} + 6\sqrt{2}x -\sqrt{2}x  - 3 \\ \implies 2\sqrt{2}x(\sqrt{2}x + 3) -1(\sqrt{2}x +3) \\ \implies (2\sqrt{2}x -1)(\sqrt{2} +3) = 0 \\ \implies (2\sqrt{2}x -1) = 0 \; ; (\sqrt{2} +3) = 0

 2\sqrt{2}x -1 = 0 \\ x = \dfrac{1}{2\sqrt{2}}

 \sqrt{2}x +3 = 0 \\ x = \dfrac{-3}{\sqrt{2}}

Zeroes of  f(x) = 4{x}^{2} + 5\sqrt{2}x - 3 are   \dfrac{1}{2\sqrt{2}} and  \dfrac{-3}{\sqrt{2}}


BrainlyGod: x is missing in 2nd equation
Anonymous: yes
Similar questions