Math, asked by ramanunja, 7 months ago

x=1-√2 find (x-1/x)^4​

Answers

Answered by Asterinn
3

Given :

x = 1 -  \sqrt{2}

To find :

 {(x -  \dfrac{1}{x}) }^{4}

Solution :

We know that :-

x = 1 -  \sqrt{2}

Now :-

 \dfrac{1}{x} =  \dfrac{1}{1 -  \sqrt{2} }

Now rationalise the denominator :-

 \dfrac{1}{x} =  \dfrac{1}{1 -  \sqrt{2} }  \times \dfrac{1  +  \sqrt{2}}{1  +  \sqrt{2} }

we know that :- (a-b) (a+b) = a²-b²

 \dfrac{1}{x} = \dfrac{1  +  \sqrt{2}}{ {(1)}^{2}    -   {( \sqrt{2})}^{2}  }

\dfrac{1}{x} = \dfrac{1  +  \sqrt{2}}{ {1} - {2  }}

\dfrac{1}{x} = \dfrac{1  +  \sqrt{2}}{ (  - 1)}

\dfrac{1}{x} = ( - 1)({1  +  \sqrt{2}})

\dfrac{1}{x} =  - 1   -  \sqrt{2}

Now we will find :- x - 1/x

x -  \dfrac{1}{x}  = 1 -  \sqrt{2}  - ( - 1 -  \sqrt{2} )

x -  \dfrac{1}{x}  = 1 -  \sqrt{2}   + 1 +  \sqrt{2}

x -  \dfrac{1}{x}  =  1  +  1 +  \sqrt{2}-  \sqrt{2}

x -  \dfrac{1}{x}  =  2

Now ,

 {(x -  \dfrac{1}{x}  )}^{4} =   {2}^{4}

{(x -  \dfrac{1}{x}  )}^{4} =  2 \times 2 \times 2 \times 2

{(x -  \dfrac{1}{x}  )}^{4} =  16

Answer : 16

Similar questions