Math, asked by giteshlc86, 3 months ago

x-1, 2x+1, x+5, 3x+1 are in ascending
order. If the median is 18, find the value of x.​

Answers

Answered by ganeshbmk19310
1

Answer:

Number of observations = 4

If number of observation is even :-

\implies\sf Median = \dfrac{\Big(\dfrac{n}{2}\Big)^{th} \: observation + \Big(\dfrac{n}{2} + 1\Big)^{th} \: observation}{2}⟹Median=

2

(

2

n

)

th

observation+(

2

n

+1)

th

observation

\sf n = 4n=4

\implies\sf Median = \dfrac{\Big(\dfrac{4}{2}\Big)^{th} \: observation + \Big(\dfrac{4}{2} + 1\Big)^{th} \: observation}{2}⟹Median=

2

(

2

4

)

th

observation+(

2

4

+1)

th

observation

\implies\sf Median = \dfrac{2^{nd} \: observation + 3^{rd}\: observation}{2}⟹Median=

2

2

nd

observation+3

rd

observation

\sf 2^{nd} \: observation = x + 52

nd

observation=x+5

\sf 3^{rd}\: observation = 2x + 13

rd

observation=2x+1

\sf Median = 18Median=18

\implies\sf 18 = \dfrac{2x + 1+ x + 5}{2}⟹18=

2

2x+1+x+5

\implies\sf 18 \times 2 = 2x + x + 1 + 5⟹18×2=2x+x+1+5

\implies\sf 36 = 3x + 6⟹36=3x+6

\implies\sf 3x = 36 - 6⟹3x=36−6

\implies\sf 3x = 30⟹3x=30

\implies\sf x = \dfrac{30}{3}⟹x=

3

30

\implies\sf x = 10⟹x=10

Value of x = 10

Similar questions