x-1)3x^ 4 -4x^ 3 -3x-1
by long division method
Answers
Step-by-step explanation:
Given:-
3x^ 4 -4x^ 3 -3x-1
To find :-
Divide 3x^ 4 -4x^ 3 -3x-1 by x-1?
Solution:-
Given Polynomial = 3x^ 4 -4x^ 3 -3x-1
It can be written as 3x^ 4 -4x^ 3+0x^2 -3x-1
Given divisor = x-1
Long Division:-
x-1) 3x^ 4 -4x^ 3 + 0x^2 -3x-1(3x^3 - x^2 -x-4
3x^ 4 -3x^ 3
(-) (+)
____________________
0 - x^ 3 + 0x^ 2
- x^ 3 + x^ 2
(+) (-)
_____________________
0 - x^ 2 - 3x
- x^ 2 + x
(+) (-)
______________________
0 -4x -1
-4x +4
(+) (-)
_______________________
0 -5
________________________
Quotient = 3x^3 - x^2 -x-4
Remainder = -5
Answer:-
Quotient = 3x^3 - x^2 -x-4
Remainder = -5
Check:-
Dividend = Divisor× Quotient+Remainder
=> (x-1)×(3x^3 - x^2 -x-4)+(-5)
=>x(3x^3 - x^2 -x-4)-1(3x^3 - x^2 -x-4)-5
=> 3x^4 -x^3 -x^2 -4x -3x^3+x^2+x+4-5
=> 3x^4-4x^3+0x^2-3x-1
=> 3x^4-4x^3-3x-1
=> Given Polynomial
Verified the given relation.
Used Method:-
Long Division Method
Used formula:-
Dividend = Divisor× Quotient+Remainder