Math, asked by mantashanoor, 1 year ago

X=1/4-x find the value of
X3+1/x3​

Answers

Answered by LovelyG
25

Answer:

\large{\underline{\boxed{\sf  {x}^{3}  +  \frac{1}{ {x}^{3} } = 52}}}

Step-by-step explanation:

Given that-

 \sf x  =  \frac{1}{4 - x}  \\  \\ \implies \sf   \frac{1}{x}  = 4 - x \\  \\ \implies \sf   \frac{1}{x}  + x = 4 \\  \\ \implies \sf  x +  \frac{1}{x}  = 4 \\  \\ \bf on \: cubing \: both \: sides -  \\  \\ \implies \tt (x +  \frac{1}{x}) {}^{3}  = (4) {}^{3}  \\  \\ \implies \tt  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \: . \: x \:  .\:  \frac{1}{x} (x +  \frac{1}{x} ) = 64 \\  \\ \implies \tt  {x}^{3}  +  \frac{1}{ {x}^{3} } + 3(x +  \frac{1}{x} ) = 64 \\  \\ \implies \tt  {x}^{3}  +  \frac{1}{ {x}^{3} } + 3 \times 4 = 64 \\  \\ \implies \tt  {x}^{3}  +  \frac{1}{ {x}^{3} } + 12 = 64 \\  \\ \implies \tt  {x}^{3}  +  \frac{1}{ {x}^{3} } = 64 - 12 \\  \\ \implies \tt  {x}^{3}  +  \frac{1}{ {x}^{3} } = 52

Hence,

\boxed{ \bf  \therefore \:  {x}^{3}  +  \frac{1}{ {x}^{3} } = 52}

Similar questions