Math, asked by rashmibhatt19777, 11 months ago

X=1-root2 find value of (x-1/x)*4

Answers

Answered by Anonymous
3

GIVEN:

x=1-\sqrt{2}

TO FIND:

(x-\dfrac{1}{x}) ^{4}

ANSWER:

We have,

x=1-\sqrt{2}

So,

=>\dfrac{1}{x}=\dfrac{1}{1-\sqrt{2}}

On rationalising denominator,

=>\dfrac{1}{x}=\dfrac{1(1+\sqrt{2})}{(1-\sqrt{2}) (1+\sqrt{2})}

=>\dfrac{1}{x}=\dfrac{1+\sqrt{2}}{1^{2}-\sqrt{2}^{2}}

\large\green{\boxed{(a+b) (a-b) =a^{2}-b^{2}}}

=>\dfrac{1}{x}=\dfrac{1+\sqrt{2}}{1-2}

=>\dfrac{1}{x}=\dfrac{1+\sqrt{2}}{-1}

=>\dfrac{1}{x}=\dfrac{(-1) (1+\sqrt{2})}{-1\times-1}

=>\dfrac{1}{x}=-1-\sqrt{2}

______________________________________

Hence,

=>(x-\dfrac{1}{x}) ^{4}=[1-\sqrt{2}-(-1-\sqrt{2})]^{4}

=>(x-\dfrac{1}{x}) ^{4}=[1-\sqrt{2}+1+\sqrt{2}]^{4}

=>(x-\dfrac{1}{x}) ^{4}=(2) ^{4}

.°.(x-\dfrac{1}{x}) ^{4}=16

Hence required answer is 16.

\huge\orange{\boxed{.°.(x-\dfrac{1}{x}) ^{4}=16}}

Similar questions