Math, asked by pantgeeta78gmailcom, 1 year ago

x + 1 upon x = 28 find x square + 1 upon x square​

Answers

Answered by LovelyG
11

Answer:

\large{\underline{\boxed{\sf x^2 + \frac{1}{x^2} = 782}}}

Step-by-step explanation:

Given that -

 \sf x +  \frac{1}{x}  = 28 \\  \\ \bf on \: squaring \: both \: sides :  \\  \\ \sf (x +  \frac{1}{x} ) {}^{2}  = (28) {}^{2}  \\  \\ \implies \sf x {}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \: . \: x \:  .\:  \frac{1}{x}  = 784 \\  \\ \implies \sf x {}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 784 \\  \\ \implies \sf x {}^{2}  +  \frac{1}{ {x}^{2} }   = 784 - 2 \\  \\ \implies \sf x {}^{2}  +  \frac{1}{ {x}^{2} }   = 782

Hence, the answer is \boxed{\bf x^2 + \frac{1}{x^2} = 782}

_______________________

★ Identity Used:

  • (a + b)² = a² + b² + 2ab


pantgeeta78gmailcom: Thanks
LovelyG: Welcome :)
Answered by Anonymous
10

\mathfrak{\large{\underline{\underline{Answer:-}}}}

\boxed{\bf{x^2 + \dfrac{1}{x^2} = 782}}

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

Given :- \sf{x +  \dfrac{1}{x} = 28}

To find :- \sf{x^2 +  \dfrac{1}{x^2}}

Solution :-

\sf{x +  \dfrac{1}{x} = 28}

By squaring on both the sides :-

\sf{{(x +  \frac{1}{x})}^{2} =  {28}^{2} }

We know that (a + b)² = a² + b² + 2ab

Here a = x , b = 1/x

By substituting the values in the identity we have,

\sf{{x}^{2} + {(\frac{1}{x})}^{2} + 2 \times x \times  \frac{1}{x}  =784}

\sf{x^2 + \dfrac{1}{x^2} + 2 = 784}

\sf{x^2 + \dfrac{1}{x^2} = 784 - 2}

\sf{x^2 + \dfrac{1}{x^2} = 782}

\boxed{\bf{x^2 + \dfrac{1}{x^2} = 782}}

\mathfrak{\large{\underline{\underline{Identity\:Used:-}}}}

(a + b)² = a² + b² + 2ab

\mathfrak{\large{\underline{\underline{Some\:Important\:Identities:-}}}}

[1] (a - b)² = a² + b² - 2ab

[2] (a + b)(a - b) = a² - b²

[3] (x + a)(x + b) = x² + (a + b)x + ab


pantgeeta78gmailcom: Thank you very much
Anonymous: Welcome
Similar questions