( x + 1 upon x) find its value if x+ 1upon x= 4
Answers
Answered by
1
I think I must find the value of x
x + 1/x = 4
x²+1/x = 4
cross multiplication
x²+1=4x
x²- 4x + 1 =0
it is in a form of ax² + bx + c = 0
a = 1 ,b = - 4 ,c = 1
by using Shridhar's law
![= x \ \\ = \: - b + - \sqrt{b {}^{2} - 4ac } \div2a \\ = - ( - 4) + - \sqrt{( - 4){}^{2} -4(1)(1) } \div 2(1) \\ = \: 4 + - \sqrt{12} \div 2 \\ = \: 4 \: + - 2 \sqrt{3} \div 2 \\ \\ x \: = \: 4 + 2 \sqrt{3} \div 2 \\ x = 2(2 + \sqrt{3} ) \div 2 \\ \:x = \: 2 + \sqrt{3 } \: \: or \\ \\ x \: = 4 - 2 \sqrt{3} \div 2 \\ x \: = \: 2(2 - \sqrt{3} ) \div 2 \\ x \: = \: 2 - \sqrt{3} = x \ \\ = \: - b + - \sqrt{b {}^{2} - 4ac } \div2a \\ = - ( - 4) + - \sqrt{( - 4){}^{2} -4(1)(1) } \div 2(1) \\ = \: 4 + - \sqrt{12} \div 2 \\ = \: 4 \: + - 2 \sqrt{3} \div 2 \\ \\ x \: = \: 4 + 2 \sqrt{3} \div 2 \\ x = 2(2 + \sqrt{3} ) \div 2 \\ \:x = \: 2 + \sqrt{3 } \: \: or \\ \\ x \: = 4 - 2 \sqrt{3} \div 2 \\ x \: = \: 2(2 - \sqrt{3} ) \div 2 \\ x \: = \: 2 - \sqrt{3}](https://tex.z-dn.net/?f=+%3D+x+%5C+%5C%5C+++%3D++%5C%3A++-+b+%2B++-++%5Csqrt%7Bb+%7B%7D%5E%7B2%7D+-+4ac+%7D++%5Cdiv2a+%5C%5C++%3D++-+%28+-+4%29+%2B++-++%5Csqrt%7B%28+-+4%29%7B%7D%5E%7B2%7D++-4%281%29%281%29+%7D++%5Cdiv+2%281%29+%5C%5C++%3D++%5C%3A+4+%2B++-++%5Csqrt%7B12%7D++%5Cdiv+2+%5C%5C++%3D++%5C%3A+4++%5C%3A++%2B++-+2+%5Csqrt%7B3%7D++%5Cdiv+2+%5C%5C++%5C%5C+x+%5C%3A++%3D++%5C%3A+4+%2B+2+%5Csqrt%7B3%7D++%5Cdiv+2+%5C%5C+x+%3D+2%282+%2B++%5Csqrt%7B3%7D+%29+%5Cdiv+2+%5C%5C++%5C%3Ax+%3D++%5C%3A+2+%2B++%5Csqrt%7B3+%7D++%5C%3A++%5C%3A+or+%5C%5C++%5C%5C+x+%5C%3A++%3D++4+-+2+%5Csqrt%7B3%7D++%5Cdiv+2+%5C%5C+x+%5C%3A++%3D++%5C%3A+2%282+-++%5Csqrt%7B3%7D+%29+%5Cdiv+2+%5C%5C+x+%5C%3A++%3D++%5C%3A+2+-++%5Csqrt%7B3%7D+)
x + 1/x = 4
x²+1/x = 4
cross multiplication
x²+1=4x
x²- 4x + 1 =0
it is in a form of ax² + bx + c = 0
a = 1 ,b = - 4 ,c = 1
by using Shridhar's law
Similar questions