x + 1/x = 1 then x^8 + x^5 + X^3 + 1 = ?
Answers
Answered by
1
hi,
if x+1/x=1 then x^8+x^5+x^3+1=0.
Indeed:
x+1/x=1==>(x+1/x)²=x²+1/x²+2=1²=1
==>x²+1/x²=-1
(x+1/x)^4=x^4+4x^3*1/x+6*x^2*1/x²+4/x²+1/x^4
1=x^4+1/x^4+4(x²+4/x²)+6
1=x^4+1/x^4+2
x^4+1/x^4=-1
x^8+x^5+x^3+1=x^4(x^4+x+1/x+1/x4)=x^4(-1+1)=0
caylus:
Is the equation x+(1/x)=1 or (x+1)/x=1 ?
Answered by
0
solution
x + 1/x=1
by taking the L.C.M from the left hand side of the equation
- ⇒ (x*x + 1)/x=1
- x² + 1=x ⇒x²-x+1=0
- by solving the equation x=1/2
- then we put the value of x in to
- (1/2)∧8 + (1/2)∧5 + (1/2)∧3 + 1
- ⇒ 1/256 + 1/32 +1/8 +1
- ⇒(1+8+32+256)/256=297/256
- then the correct answer is 297/256
Similar questions